广东省深圳市2021届高三下学期3月第一次调研考试数学试题含答案.zip

收藏

压缩包目录 预览区
  • 全部
    • 2021届广东省深圳市高考一模数学试题.pdf--点击预览
    • 2021年深圳市高三年级第一次调研考试——数学答案.pdf--点击预览
跳过导航链接。
展开 广东省深圳市2021届高三下学期3月第一次调研考试数学试题含答案.zip广东省深圳市2021届高三下学期3月第一次调研考试数学试题含答案.zip
请点击导航文件预览
编号:1196427    类型:共享资源    大小:2.58MB    格式:ZIP    上传时间:2021-03-22
8
文币
资源描述:
深圳市高三数学第一次调研考试试题答案及评分参考第1页(共13页) 2021 年深圳市高三第年深圳市高三第一一次调研考试次调研考试 数学试题答案及评分参考 一、单项选择题: 题号 1 2 3 4 5 6 7 8 答案 D A B A D C B C 二、多项选择题: 题号 9 10 11 12 答案 AC BC BD ABD 12. 解析: (1)考查选项 A:若/CD平面xOy,考虑以下特殊情形: 当点B与坐标原点O重合时,S为正方形; 当点A与坐标原点O重合时,S为三角形,故选项 A 正确; (2)考查选项 B:若点A与坐标原点O重合,即AB在z轴上, 易知/CD平面xOy,且S为三角形, 不难知道其面积为 122 1 224 =,故选项 B 正确; (3)考查选项 C:当OAOBOC=,且点O在正四面体ABCD外部时, 则点D恰好为以OA,OB,OC为棱的正方体的一个顶点, 1AB =, 2 2 OA=,S是边长为 2 2 的正方形,其面积为 1 2 ,故选项 C 错误; (不难知道当OA OBOC=,且点O在正四面体ABCD内部时,S为三角形,且其面积为 5 12 ) (4)考查选项 D:设AB的中点为M,则 1 2 OM =,且 3 2 MD =, 易知 133 22 ODOMMD + +=,即 3 2 OD , 点D到坐标原点O的距离小于 3 2 ,故选项 D 正确; 综上所述,应选 A、B、D. 三、填空题: 13. 2 1 ( )= 4 f xx +(答案不唯一) ; 14. 8; 15. 6; 16. 13 + 23 . 绝密绝密启封并使用完毕前启封并使用完毕前 试题类型:试题类型:A 深圳市高三数学第一次调研考试试题答案及评分参考第2页(共13页) 13. 解析: 2 1 ( )= 4 f xx +,或 2 1 ( )= 2 x f x + ,或 2 1 ( )= 2 x f x + 等(只需 2 ( )=f xaxc+满足 1 4 ac =即可) 16. 解析:不妨设BCa=,ACb=, 若30ACB=,则由正弦定理可得2 sin30 AB = ,故1AB =, 由余弦定理得 222222 3 12cos303(1)() 2 ababababab=+=+, 22 42 3ab+, 显然ABC 为由ABC所得到的拿破仑三角形(等边三角形),设其边长为x, 易知90ACB=,且 3 3 ACa=, 3 3 BCb=, 22222 331 ()()() 333 xabab=+=+, ABC 的面积 222 33313 ()(42 3)+ 4121223 Sxab=+=, 显然可取等号,即ABC 的面积最大值为 13 + 23 ,故应填 13 + 23 . 四、解答题:解答应写出文字说明,证明过程或演算步骤 17 (10 分) 设数列 n a的前n项和 n S,满足 1 12 n n n S S S + = + ,且 1 1a =. (1)证明:数列 1 n S 为等差数列; (2)求 n a的通项公式. 解: (1)由 1 12 n n n S S S + = + ,得 1 121 n nn S SS + + = , 2 分 1 11 2 nn SS + = , 11 11 1 Sa = , 故数列 1 n S 是首项为 1,公差为 2 的等差数列. 4 分 (2)由(1)知 1 1 (1) 221 n nn S = += , 则 1 21 n S n = ,6 分 当1n且n 时,1 112 2123(21)(23) nnn aSS nnnn = ,8 分 深圳市高三数学第一次调研考试试题答案及评分参考第3页(共13页) 故 n a 的通项公式为 1=1 =2 1. (21)(23) n n a n nn , , 10 分 【命题意图】 本题主要考查等差数列的定义和通项公式, 以及 n a与 n S的关系, 考察了学生的数学运算, 逻辑推理等核心素养. 18 (12 分) ABC的内角A,B,C的对边分别为a,b,c, 已知A为锐角, 22 sincos 2 ca BC ab =. (1)求A; (2)若 3 4 bc=,且BC边上的高为2 3,求ABC的面积. 解: (1) 22 sincos 2 ca BC ab =, 22 2sin2cosabBcaabC=+, 1 分 由余弦定理,得 222 2coscababC=+, 2 2sinabBb=, 2 sinaBb=, 2 分 由正弦定理,得 sinsin ab AB =, 2sin sinsinABB=, 又()0,B,即sin0B, 1 sin 2 A=, 4 分 角A为锐角, 6 A=. 6 分 (2)BC边上的高为2 3, ABC的面积 1 =2 33 2 Saa =,7 分 又ABC的面积 1 =sin 24 bc SbcA=, 3 4 bc a=,即4 3bca=, 8 分 又 3 4 bc=, 深圳市高三数学第一次调研考试试题答案及评分参考第4页(共13页) 2 16ca=,且 22 3 3 16 bca=,10 分 在ABC中,由余弦定理,得 2222 316193 cos 2224 38 3 bcaaaaa A bca + = , 解得7a=, 11 分 = 37 3Sa=,即ABC的面积为7 3. 12 分 【命题意图】本题主要考察正弦定理,余弦定理等知识,意在考察考生方程、转化与化归思想,考察 了学生的逻辑推理,数学运算等核心素养 19 (12 分) 某校将进行篮球定点投篮测试,规则为:每人至多投3次,先在M处投一次三分球,投进得3分,未 投进不得分,以后均在N处投两分球,每投进一次得2分,未投进不得分. 测试者累计得分高于3分即通 过测试,并终止投篮. 甲、乙两位同学为了通过测试,进行了五轮投篮训练,每人每轮在M处和N处各投10次,根据他们 每轮两分球和三分球的命中次数分别得到如下图表: (第 19 题图) 若以每人五轮投篮训练命中频率的平均值作为其测试时每次投篮命中的概率. (1)求甲同学通过测试的概率; (2)若甲、乙两位同学均通过了测试,求甲得分比乙得分高的概率. 解: (1)甲同学两分球投篮命中的概率为5 . 0 5 10 7 10 6 10 3 10 4 10 5 = + , 1 分 甲同学三分球投篮命中的概率为1 . 0 5 10 1 10 2 10 1 0 10 1 = + , 2 分 设甲同学累计得分为X, 深圳市高三数学第一次调研考试试题答案及评分参考第5页(共13页) 则(4)(4)(5)0.9 0.5 0.50.1 0.50.1 0.5 0.50.3P XP XP X=+=+= 甲同学通过测试的概率为0.3. 5 分 (2)同(1)可求,乙同学两分球投篮命中的概率为0.4,三分球投篮命中的概率为0.2, 7 分 设乙同学累计得分为Y,则 128. 04 . 04 . 08 . 0)4(=YP, 8 分 128. 04 . 06 . 02 . 04 . 02 . 0)5(=+=YP, 9 分 设“甲得分比乙得分高”为事件A,“甲、乙两位同学均通过了测试”为事件B, 则()(5)(4)0.075 0.1280.0096P ABP XP Y=, 10 分 0768. 0)5()4()5()4()(=+=+=YPYPXPXPBP, 11 分 由条件概率公式可得, ()0.00961 (|) ( )0.07688 P AB P A B P B =. 12 分 【命题意图】本题以体育运动为背景,通过频率与概率定义以及条件概率公式等知识点,考查学生数 学建模、数学运算、逻辑推理等数学核心素养,体现分类讨论的数学思想. 20 (12 分) 如图,在四棱锥SABCD中,13SASBSCSD=,ACCD,6AB=,8BD=. (1)求证:平面SAD平面ABCD; (2)求二面角A SBD的余弦值. (第 20 题图) 解: (1)证明: 如图所示,取AD的中点M,连接SM,MC. 1 分 SASD=, SMAD. ACCD, ACD是直角三角形, 1 2 CMAD=, AMCMDM=. SASC=, A B C D S M C A B D S 深圳市高三数学第一次调研考试试题答案及评分参考第6页(共13页) RtSAM RtSCM, 3 分 2 CMSAMS=, AMCMM=, SM 平面ABCD, 又SM 平面SAD, 平面SAD平面ABCD. 5 分 (2)由(1)可知,SM 平面ABCD, 2 BMSAMS=, 又SASB=, RtSAM RtSBM, BMAM=, A,B,C,D四点共圆, ABBD. 6 分 6AB=,8BD=, 10AD=, 5AM =, 又13SA=, 12SM =. 7 分 (解法一)以B为坐标原点,BD为x轴,BA为y轴,过点B平行于SM的直线为z轴,建立如图所 示的空间直角坐标系,易得(0,0,0)B,(8,0,0)D,(0,6,0)A,(4,3,12)S, 8 分 则有(4,3,12)=BS,(0,6,0)=BA,(8,0,0)=BD, 分别设平面ABS和平面DBS的法向量为 111 ( ,)=mx y z和 222 (,)=nxy z, 则 0 0 = = , , BA m BS m 即 1 111 60 43120 = += , , y xyz 9 分 则平面ABS的一个法向量为(3,0, 1)=m, 同理,平面DBS的一个法向量为(0,4, 1)n =, 10 分 1170 cos, 1701017 m n m n mn = , 11 分 A B C D S M z y x 深圳市高三数学第一次调研考试试题答案及评分参考第7页(共13页) 设二面角A SBD的平面角为,则 170 cos 170 =. 12 分 (解法二)以M为坐标原点,过点M平行于DB的直线为x轴,平行于AB的直线为y轴,MS为z 轴,建立如图所示的空间直角坐标系,易得(4,3,0)B,( 4,3,0)D ,(4, 3,0)A,(0,0,12)S, 8 分 则有( 4, 3,12)BS = ,(0, 6,0)BA=,( 8,0,0)BD = , 分别设平面ABS和平面DBS的法向量为 111 ( ,)=mx y z和 222 (,)=nxy z, 则 0 0 = = , , BA m BS m 即 1 111 60 43120 y xyz = += , , 9 分 则平面ABS的一个法向量为(3,0,1)m =, 同理,平面DBS的一个法向量为(0,4,1)n =, 10 分 1170 cos, 1701017 m n m n mn = , 11 分 设二面角A SBD的平面角为,则 170 cos 170 =. 12 分 (解法三)如图所示,过点A,D分别作SB的垂线,并交SB于点E,F. 8 分 在等腰SAB中,由 2222 ABBEASSE=, 得 2222 613(13)BEBE=,解得 18 13 BE =, 在RtEAB中,由 22222 2 1836 160 6() 1313 AEABBE =, 9 分 同理, 32 13 BF =, 2 2 64 153 13 FD =, 则 14 13 EFBFBE=,10 分 由AD EAEFFD= + , 可得 2222 2 ()2ADEAEFFDEAEFFDEA FD= +=+, 则 22 2222 36 1601464 15336 16064 153 10()2cos, 1313131313 EA FD =+ , 解得 170 cos, 170 EA FD=, 11 分 易知二面角A SBD的平面角就是EA与FD的夹角, 设二面角A SBD的平面角为,则 170 cos 170 =. 12 分 【命题意图】本题主要考察线面垂直的判定与性质,面面垂直的判定,空间向量,二面角的平面角.涉 A B C D S M E F x z A B C D S M y 深圳市高三数学第一次调研考试试题答案及评分参考第8页(共13页) 及到的思想方法主要有向量法,数形结合思想,等价转化思想.考察了学生的直观想象,逻辑推理,数学运 算等核心素养. 21 (12 分) 设O是坐标原点,以 1 F, 2 F为焦点的椭圆 2 2 22 :1(0) xy Cab ab +=的长轴长为2 2,以 12 FF为直径 的圆和C恰好有两个交点. (1)求C的方程; (2)P是C外的一点,过P的直线 1 l, 2 l均与C相切,且 1 l, 2 l的斜率之积为 1 ( 1) 2 mm , 记u为PO的最小值,求u的取值范围. 解:(1)由题意,22 2a =, 2a =, 1 分 又以 12 FF为直径的圆和C恰好有两个交点, 即bc=, 2 分 又 222 +=2bca =, 1bc= =, 3 分 C的方程为 2 2 1 2 x y+=. 4 分 (解法一)由题意, 1 l, 2 l的斜率存在且不为零,设过点 00 (,)P xy 的切线 00 :()l yyk xx= , 由方程组 00 2 2 () 2 yyk xx x y = + , =1, 消去y, 并整理得 222 0000 (1 2)4 ()2()20kxk ykx xykx+=, 6 分 l与C相切, 22 000 2 0 2 168(1()(21)(ykxykkkx=+=0, 7 分 化简并整理,得 0 22 0 () =21kxky +, 整理成关于k的一元二次方程得 222 0000 (2)210 xkx y ky+ =, (易知 0 2x ) 8 分 设 1 l, 2 l的斜率分别为 1 k, 2 k, 易知 1 k, 2 k为方程 222 0000 (2)210 xkx y ky+ =的两根, 2 0 12 2 0 1 2 y kkm x = , 深圳市高三数学第一次调研考试试题答案及评分参考第9页(共13页) 22 00 1 2ymxm=+ , () 222 000 11 2xym xm+=+ , 10 分 () 222 000 |112POxym xm=+=+ , 易知当 0 0 x = 时,有 min |12uPOm=, 11 分 又 1 1 2 m , 23u, 即u的取值范围为 2, 3. 12 分 (解法二)由题意, 1 l, 2 l的斜率存在且不为零,设点 00 (,)P xy , 1 lykxb=+: , 2 m lyxn k =+:, 显然 m k k ,即 2 0km, 由方程组 2 2 2 ykxb x y =+ + , =1, 消去y,并整理得 222 (1 2)4220kxkbxb+=, 6 分 1 l与C相切, 222 (4)4(21)(22)kbkb=+=0, 即 22 =21bk +, 7 分 同理由 2 l与C相切可得, 2 2 2 2 =1 m n k +, 由方程组 ykxb m yxn k =+ + , =, 解得 0 2 2 0 2 () = nb k x km k nbm y km , =, 8 分 22222 2 0 22 24222 2 0 22 2 () 2 () n kb knbk x km n kb mnbmk y km + = + , =, 22 00 ymx 422222222 222 ()() = () kmknmmkbk nmb kmkm + = , 又 22 =21bk +, 2 2 2 2 =1 m n k +, 2 22 2 22 00 2 2 (1)(21) =12 m kmk k ymxm km + , 深圳市高三数学第一次调研考试试题答案及评分参考第10页(共13页) 22 00 1 2ymxm=+ , () 222 000 11 2xym xm+=+ , 10 分 () 222 000 |112POxym xm=+=+ , 易知当 0 0 x = 时,有 min |12uPOm=, 11 分 又 1 1 2 m , 23u, 即u的取值范围为 2, 3. 12 分 【命题意图】本题以直线与椭圆为载体,以椭圆的双切线(切点弦)性质为背景,利用代数方法解决 几何问题,考查学生的逻辑推理,数学运算等数学核心素养及思辨能力. 22 (12 分) 已知函数 2 ( )ln2 (1 ln )f xaxxx=+,Ra. (1)讨论函数( )f x的单调性; (2)若函数 22 ( )e( )2g xf xa=有且仅有3个零点,求a的取值范围.(其中常数=2.718 28e,是自 然对数的底数) 解: (1)易知( )f x的定义域为(0,)+,且 2()ln ( ) axx fx x =,(1)0 f =,1 分 若0a,当(0,1)x时,( )0fx;当(1,)x+时,( )0fx, ( )f x在(0,1)上单调递增,在(1,)+上单调递减; 2 分 若01a,易知当(0, )xa时,( )0fx; 当( ,1)xa时,( )0fx;当(1,)x+时,( )0fx; ( )f x在(0, )a和(1,)+上单调递减,在( ,1)a上单调递增; 3 分 若1a =,则( )0fx, ( )f x在(0,)+上单调递减; 4 分 若1a ,易知当(0,1)x时,( )0fx; 当(1, )xa时,( )0fx;当( ,)xa+时,( )0fx; ( )f x在(0,1)和( ,)a +上单调递减,在(1, )a上单调递增. 深圳市高三数学第一次调研考试试题答案及评分参考第11页(共13页) 综上所述, 当0a时,( )f x在(0,1)上单调递增, 在(1,)+上单调递减; 当01a时,( )f x在(0, )a 和(1,)+上单调递减,在( ,1)a上单调递增;当1a =时,( )f x在(0,)+上单调递减;当1a 时,( )f x在 (0,1)和( ,)a +上单调递减,在(1, )a上单调递增. 5 分 (2)令( )0g x =,则 2 2 2 ( ) e a f x =, 依题意可知函数( )yf x=与 2 2 2 e a y =的图象有3个不同的交点, 由(1)易知必有01a,或1a , 6 分 当01a时,( )f x在(0, )a和(1,)+上单调递减,在( ,1)a上单调递增, ( )f x的极大值为(1)2f=,( )f x的极小值为 2 ( )(ln2ln2)f aaaa=+, 又 2 22 2 2 ( )(ln2ln2)(ln1)1 e a f aaaaaaa=+=+, 函数( )yf x=与 2 2 2 e a y =的图象至多有1个交点,不合题意, 7 分 当1a 时,( )f x在(0,1)和( ,)a +上单调递减,在(1, )a上单调递增, ( )f x的极小值为(1)2f=,( )f x的极大值为 2 ( )(ln2ln2)f aaaa=+, 须有 2 2 2 2 2(ln2ln2) e a aaa+成立, 2 2 2 2 e a ,ea , 8 分 2 2 2 2 (ln2ln2) e a aaa+, 2 2 2 ln2ln2 e a aa+(*) , 下面求不等式(*)的解集, (解法一)令lnax=,则不等式(*)等价于 22 2e22 x xx +, 令函数 22 ( )22e2 x h xxx =+,则 2 ( )222exh xx = , 令 2 222exyx = ,则 2 22exy = , x (,2) 2 (2,)+ y + 0 y 极大值 函数 2 222exyx = 在区间( ,2) 上单调递增,在区间(2, )+上单调递减, 又(2)0y=, 2 222e0 x yx =, 9 分 即( )0h x恒成立,故函数( )h x单调递减, 又(2)0h=,当且仅当2x时,( )0h x , 深圳市高三数学第一次调研考试试题答案及评分参考第12页(共13页) 不等式 22 2e22 x xx +的解集为( ,2) ,即不等式(*)的解集为 2 (0,e ), 10 分 (解法二)令函数 2 2 2 ( )ln2ln2 e a aaa=+,则 2 2 2ln2 e ( ) a a a a =, 令 2 2 2ln2 e a ya=,则 2 22 e y a = , x 2 (0,e ) 2 e 2 (e ,)+ y + 0 y 极大值 函数 2 2 2ln2 e a ya=在区间 2 (0,e )上单调递增,在区间 2 (e ,)+上单调递减, 又 2 (e )0y=, 2 2 2ln20 e a ya=, 9 分 即( )0a恒成立,故函数( )a单调递减, 又 2 (e )0=, 不等式 ( )0a 的解集为 2 (0,e ), 10 分 必有 2 eea, 下面证明,当 2 eea时,函数 22 ( )e( )2g xf xa=有且仅有3个零点, (解法一)一方面,当 2 eea时, 2 33 2 2 (e)2e(1) e aa a faaa =+, 11 分 另一方面,当 2 eea时, 33232 (e )94e9e4ee (94e)0fa=, 3 (e ) (1)ff, 不难知道,当 2 eea时,函数 22 ( )e( )2g xf xa=有且仅有3个零点, 综上所述,实数a的取值范围为 2 (e,e ). 12 分 (解法二)当 2 eea时,有 22 12 ( )( ) ln(1ln ) ln2 (1ln )ff aaaaaaaa aa =+ 22224 2(2 )ln2(2 )0aaaaa aaaaa =+=, 1 ( )( )ff a a , 11 分 显然当0 x时,有 2 e 2 x x (证明略), 于是,当 2 eea时,有 12122 (e)(1)2 e(1)(1)0 aa fa aaa aa a + =+=, 1 (e)(1) a ff + , 不难知道,当 2 eea时,函数 22 ( )e( )2g xf xa=有且仅有3个零点, 深圳市高三数学第一次调研考试试题答案及评分参考第13页(共13页) 综上所述,实数a的取值范围为 2 (e,e ). 12 分 【命题意图】 本题以基本初等函数的单调性和零点问题为载体, 考查学生利用导数分析、 解决问题的 能力,分类讨论思想及逻辑推理、数学运算等数学核心素养,具有较强的综合性.
展开阅读全文
【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《广东省深圳市2021届高三下学期3月第一次调研考试数学试题含答案.zip》由用户(cbx170117)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
关 键 词:
广东省 深圳市 高三 下学 第一次 调研 考试 数学试题 答案 谜底
提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:广东省深圳市2021届高三下学期3月第一次调研考试数学试题含答案.zip
链接地址:https://www.163wenku.com/p-1196427.html
cbx170117
     内容提供者      个人认证 实名认证

Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


侵权投诉QQ:3464097650  资料上传QQ:3464097650
   


【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

163文库