2020-2021人教版初中数学八年级下册平行四边形的判定说课稿.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020-2021人教版初中数学八年级下册平行四边形的判定说课稿.doc》由用户(永遠守護你)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 2021 人教版 初中 数学 年级 下册 平行四边形 判定 说课稿 下载 _八年级下册_人教版(2024)_数学_初中
- 资源描述:
-
1、人教版八年级下册数学平行四边形的判定说课稿人教版八年级下册数学平行四边形的判定说课稿 平行四边形的判定(1) 说课稿 各位领导、 老师们,大家好。今天我说课的内容是人教版义务教育新课标 数学八年级下册平行四边形的判定第一课时。 下面谈一下本节课的设想。 一、教材分析 (一)教材所处地位和作用: 平行四边形的判定紧接平行四边形的性质 一节。纵观整个初中平面几何教材,它是在学生掌握了平行线、三角形及简单图 形的平移和旋转等平面几何知识,并且具备了初步的观察、操作等活动经验的基 础上讲授的。这一节课既是前面所学知识的继续,又是后面学习菱形、矩形及正 方形等知识的基础,起着承前启后的作用。 (二)教学
2、目标分析:根据学生已有的认识基础及本课教材的地位和作用,依据 新课程标准确定本课教学目标为: 知识与技能:通过探索平行四边形常用的判定条件的过程,掌握平行四边形常用 的判定方法 数学思考:1、通过观察、实验、猜想、验证、推理、交流等数学活动,发展学 生的合情推理能力和动手操作能力及应用数学的意识和能力。 2、使学生掌握证明与举反例是判断一个数学命题是否成立的基本方法。 解决问题:通过平行四边形判别条件的探索过程,丰富学生从事数学活动的经验 与体验,感受感受数学思考过程的条理性及解决问题的策略的多样性,发展学生 的实践能力及创新意识。 情感态度与价值观:培养学生合情推理能力,以及严谨的书写表达,
3、体会几何思 维的真正内涵 (三)教学重点难点分析:行四边形的判定方法涉及平行四边形元素的各方面, 同时它又与平行四边形的性质联系, 判定一个四边形是否为平行四边形是利用平 行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重 点平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行 四边形,是本节的难点因此在例题讲解时,采用启发式教学模式,根据题目中 具体条件结合图形引导学生根据分析法解题程序从条件或结论出发, 由学生自己 去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定 定理会有帮助 二、教法学法分析:鉴于教材特点及八年级学生的年龄特点、心理特
4、征和认知水 平,在教学过程中引导学生通过观察、思考、探索、交流获得知识,形成技能,在 教学过程中注意创设思维情境,坚持二主方针(学生为主体,教师为主导), 让学生在 老师的引导下自始至终处于一种积极思维、主动探究的学习状态。使课堂洋溢着 轻松和谐的气氛,探索进取的气氛,而教师在其中当好课堂教学的组织者、 决策者、 创造者和参与者。同时借助实物教具进行演示,以增加课堂容量和教学的直观性。 本堂课立足于学生的“学”,要求学生多动手,多观察,让学生经历发现,说明, 完善的过程,培养其操作说理、观察归纳的能力。从而可以帮助学生形成分析、 对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生
5、利用已学 知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合 作交流的方法组织教学,使学生真正成为教学的主体,体验参与的乐趣,成功的 喜悦。 三、教学程序设计 (一) 、回顾交流,逆向思索 在复习了平行四边形定义和性质,提出判定平行四边形的方法引导学生探究。 设计意图:从旧知识问题引入新课, 提出具有启发性的问题,能够调动学生的积极 思维,激起学生的学习欲望,也为下面探究平行四边形的判定方法打下基础。著 名教育家苏霍姆林斯基曾经说过: 如果教师不想方设法使学生进入情绪高昂和智 力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度, 而不动感情的脑力劳动就会带
展开阅读全文