17.1第1课时 勾股定理(教案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《17.1第1课时 勾股定理(教案).doc》由用户(永遠守護你)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 17.1第1课时 勾股定理教案 17.1 课时 勾股定理 教案 下载 _八年级下册_人教版(2024)_数学_初中
- 资源描述:
-
1、第十七章第十七章 勾股定理勾股定理 17.117.1 勾股定理勾股定理 第第 1 1 课时课时 勾股定理勾股定理 【知识与技能】 了解勾股定理的文化背景,体验勾股定理的探索过程. 【过程与方法】 在探索勾股定理的过程中,发展合情推理能力,体会数形结合思想,学会与 人合作并能与他人交流思维的过程和探究结果,体验数学思维的严谨性. 【情感态度】 1.通过对勾股定理历史的了解,感受数学的文化,激发学习热情. 2.在探究活动中,体验解决问题的多样性,培养学生合作交流意识和探索精 神. 【教学重点】 探索和证明勾股定理. 【教学难点】 用拼图的方法证明勾股定理. 一、情境导入,初步认识 2002 年在北
2、京召开了第 24 届国际数学家大会,它是最高水平的全球性数学 科学学术会议,被誉为数学界的“奥运会”.这就是本届大会会徽的图案(教师 出示图片或照片). (1)你见过这个图案吗? (2)你听说过“勾股定理”吗? 【教学说明】学生欣赏图片时,教师应对图片中的图案进行补充说明:这个 图案是我国汉代数学家赵爽在证明勾股定理时用到的,被誉为“赵爽弦图”.通 过对图片的观察,为学生积极主动投入到探索活动中创设情境,为探索勾股定理 提供背景材料. 二、思考探究,获取新知 毕达哥拉斯是古希腊著名数学家.相传在 2500 年前,他在朋友家做客时,发 现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系.
3、请你也观察 一下类似的图案(教材 P22图形) ,你有什么发现? 【教学说明】教师与学生一道分析教材 P22图 17.1-2,右边的三个正方形及 直角三角形是从左边的等腰三角形的图案中截取出来的, 将大正方形沿对角线分 成四个小直角三角形,再把两个小正方形沿竖直对角线分成两个小直角三角形, 从而可发现其中特征. 【归纳结论】等腰直角三角形斜边的平方等于两直角边的平方和.问题等腰 直角三角形三边的关系特征是否也适用于其它的直角三角形呢?请同学们继续 观察 P23图 17.1-3,运用割补法分别计算正方形 A、B、C 和正方形 A、B、C 的面积,看看它们之间有什么关系? 【教学说明】让学生自主探
4、究或相互交流探寻出正方形 C 和 C的面积,教 师巡视,针对学生的认知方法引导学生选用不同的方法得出它们各自的面积.一 方面,正方形 C 的面积为:5 2-41 2 23=25-12=13;另一方面也有正方形 C 的面积为:4 1 2 23+1=13,而这两种方法都可以从图中直接获得,同样可得 到正方形 C的面积为 34. 通过观察上述问题的探讨, 若将直角三角形的两直角边记为 a, b, 斜边为 c, 则应有 a 2+b2=c2, 即直角三角形的两直角边的平方和等于斜边的平方.上述结论我 们都是通过特例而获得的, 是否对所有的直角三角形都能成立呢?有没有办法来 证明呢? 做一做做一做 将一张
展开阅读全文