新高考数学选填小题限时模拟练习(9).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《新高考数学选填小题限时模拟练习(9).docx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新高 数学 选填小题 限时 模拟 练习 下载 _模拟试题_高考专区_数学_高中
- 资源描述:
-
1、第 1 页(共 14 页) 新高考数学选填小题限时模拟练习(新高考数学选填小题限时模拟练习(9) 一、选择题:本题共一、选择题:本题共 8 小题,每小题小题,每小题 5 分,共分,共 40 分在每小题给出的四个选项中,只有一分在每小题给出的四个选项中,只有一 项是符合题目要求的项是符合题目要求的 1 (5 分) 已知全集 U 为实数集, Ax|x23x0, Bx|x1, 则 A (UB) ( ) Ax|0 x1 Bx|0 x1 Cx|1x3 Dx|0 x3 2 (5 分)设复数 z1,z2在复平面内对应的点关于虚轴对称,且 z11+i,则 z12=( ) A22i B22i C2i D2 3
2、(5 分)若 a,b,c 为非零实数,则“abc”是“a+b2c”的( ) A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要条件 4(5 分) 平行四边形 ABCD 中, 点 E 是 DC 的中点, 点 F 是 BC 的一个三等分点 (靠近 B) , 则 =( ) A1 2 1 3 B1 4 + 1 2 C1 3 + 1 2 D1 2 2 3 5 (5 分)随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合 化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是 “新基建” 的众多工 程之一,截至 2020 年底,我国已累计开通 5G 基站超
3、 70 万个,未来将进一步完善基础网 络体系,稳步推进 5G 网络建设,实现主要城区及部分重点乡镇 5G 网络覆盖.2021 年 1 月计划新建设 5 万个 5G 基站, 以后每个月比上一个月多建设 1 万个, 预计我国累计开通 500 万个 5G 基站时要到( ) A2022 年 12 月 B2023 年 2 月 C2023 年 4 月 D2023 年 6 月 6 (5 分)设 asin2,则( ) Aa22alog 1 2 a Blog 1 2 aa22a Ca2log 1 2 a2a Dlog 1 2 aa22a 7 (5 分)函数 f(x)|sinx|cosx 的导函数 f(x)在0,
4、上的图象大致为( ) A B 第 2 页(共 14 页) C D 8 (5 分)已知函数 f(x)= 1 4x 4+1 2ax 2+ax,则下列结论中正确的是( ) A存在实数 a,使 f(x)有最小值且最小值大于 0 B对任意实数 a,f(x)有最小值且最小值大于 0 C存在正实数 a 和实数 x0,使 f(x)在(,x0)上递减,在(x0,+)上递增 D对任意负实数 a,存在实数 x0,使 f(x)在(,x0)上递减,在(x0,+)上递 增 二、选择题:本题共二、选择题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分在每小题给出的选项中,有多项符合分在每小题给出的选项中,
5、有多项符合 题目要求全部选对的得题目要求全部选对的得 5 分,有选错的得分,有选错的得 0 分,部分选对的得分,部分选对的得 3 分分 9 (5 分)2015 年以来我国脱贫攻坚成效明显,如图是 20152019 年年末全国农村贫困人 口和贫困发生率(贫困人口占目标调查人口的比重)变化情况(数据来源:国家统计局 2019 年统计年报) ,根据这个发展趋势,2020 年底全面脱贫的任务必将完成根据图表 中可得出的正确统计结论有( ) A五年来贫困发生率下降了 5.1 个百分点 B五年来农村贫困人口减少超过九成 C五年来农村贫困人口减少得越来越快 D五年来目标调查人口逐年减少 第 3 页(共 14
6、 页) 10 (5 分)已知曲线 y2m(x2a2) ,其中 m 为非零常数且 a0,则下列结论中正确的有 ( ) A当 m1 时,曲线 C 是一个圆 B当 m2 时,曲线 C 的离心率为 2 2 C当 m2 时,曲线 C 的渐近线方程为 y 2 2 x D当 m1 且 m0 时,曲线 C 的焦点坐标分别为(a1 + ,0)和(a1 + , 0) 11 (5 分)已知曲线 ysin( + 4) (0)在区间(0,1)上恰有一条对称轴和一个对 称中心,则下列结论中正确的是( ) A存在 ,使 sin(+ 4 ) 2 2 B存在 ,使 sin(2+ 4 )= 2 2 C有且仅有一个 x0(0,1)
7、 ,使 sin(x0+ 4)= 4 5 D存在 x0(0,1) ,使 sin(x0+ 4)0 12 (5 分)如图,长方体 ABCDA1B1C1D1中,ABBC1,AA12,M 为 BB1的中点, 过 B1M 作长方体的截面 交棱 CC1于 N,则( ) A截面 可能为六边形 B存在点 N,使得 BN截面 C若截面 为平行四边形,则 1CN2 D当 N 与 C 重合时,截面面积为36 4 三、填空题:本题共三、填空题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分 13 (5 分)已知函数 f(x)ex+ex2(e 是自然对数的底数,则曲线 yf(x)在 x1 处 的切线方
8、程是 14 (5 分)某高校每年都举行男子校园足球比赛,今年有 7 支代表队出线进入决赛阶段, 其中的甲、乙两支队伍分别是去年的冠、亚军球队根据赛制,先用抽签的方式,把 7 第 4 页(共 14 页) 支出线球队随机分成 A、B 两组分别进行单循环赛,其中 A 组 3 支球队、B 组 4 支球队, 则甲、乙恰好在同一组的概率为 15 (5 分)已知抛物线 C:y22px(p0)的焦点为 F,准线 l 交 x 轴于点 K,过 F 作倾斜 角为 的直线与 C 交于 A,B 两点,若AKB60,则 sin 16(5分) 已知四棱锥PABCD的顶点都在球O上, AB3, BC4, CD1, AD26,
9、 AC5, 平面 PAD平面 ABCD,且 PAPD,则球 O 的体积为 第 5 页(共 14 页) 新高考数学选填小题限时模拟练习(新高考数学选填小题限时模拟练习(9) 参考答案与试题解析参考答案与试题解析 一、选择题:本题共一、选择题:本题共 8 小题,每小题小题,每小题 5 分,共分,共 40 分在每小题给出的四个选项中,只有一分在每小题给出的四个选项中,只有一 项是符合题目要求的项是符合题目要求的 1 (5 分) 已知全集 U 为实数集, Ax|x23x0, Bx|x1, 则 A (UB) ( ) Ax|0 x1 Bx|0 x1 Cx|1x3 Dx|0 x3 【解答】解:Ax|0 x3
10、,Bx|x1, UBx|x1,A(UB)x|0 x1 故选:B 2 (5 分)设复数 z1,z2在复平面内对应的点关于虚轴对称,且 z11+i,则 z12=( ) A22i B22i C2i D2 【解答】解:复数 z1,z2在复平面内对应的点关于虚轴对称,且 z11+i, z21+i, z12=(1+i) (1i)1iii22i 故选:C 3 (5 分)若 a,b,c 为非零实数,则“abc”是“a+b2c”的( ) A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要条件 【解答】解:abc,ac,bc,则 a+b2c, 即“abc”能推出“a+b2c” , 但满足 a+
11、b2c,取 a4,b1,c1,不满足 abc, 即“a+b2c”不能推出“abc” , 所以“abc”是“a+b2c”的充分不必要条件, 故选:A 4(5 分) 平行四边形 ABCD 中, 点 E 是 DC 的中点, 点 F 是 BC 的一个三等分点 (靠近 B) , 则 =( ) A1 2 1 3 B1 4 + 1 2 C1 3 + 1 2 D1 2 2 3 【解答】解:因为 ABCD 为平行四边形, 第 6 页(共 14 页) 所以 = , = , 故 = + = 1 2 + 2 3 = 1 2 2 3 故选:D 5 (5 分)随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化
12、以及融合 化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是 “新基建” 的众多工 程之一,截至 2020 年底,我国已累计开通 5G 基站超 70 万个,未来将进一步完善基础网 络体系,稳步推进 5G 网络建设,实现主要城区及部分重点乡镇 5G 网络覆盖.2021 年 1 月计划新建设 5 万个 5G 基站, 以后每个月比上一个月多建设 1 万个, 预计我国累计开通 500 万个 5G 基站时要到( ) A2022 年 12 月 B2023 年 2 月 C2023 年 4 月 D2023 年 6 月 【解答】解:每个月开通 5G 基站的个数是以 5 为首项,1 为公差的等差数列
13、, 设预计我国累计开通 500 万个 5G 基站需要 n 个月,则 70+5n+ (1) 2 1500, 化简整理得,n2+9n8600, 解得 n25.17 或34.17(舍负) , 所以预计我国累计开通 500 万个 5G 基站需要 25 个月,也就是到 2023 年 2 月, 故选:B 6 (5 分)设 asin2,则( ) Aa22alog 1 2 a Blog 1 2 aa22a Ca2log 1 2 a2a Dlog 1 2 aa22a 【解答】解:asin2, 2 2 3 4 , 2 2 a1, log 1 2 alog 1 2 2 2 = 1 2,且 1 2 a21,2a1,
14、log 1 2 aa22a, 故选:D 7 (5 分)函数 f(x)|sinx|cosx 的导函数 f(x)在0,上的图象大致为( ) 第 7 页(共 14 页) A B C D 【解答】解:当 x0,时,sinx0,则 f(x)|sinx|cosxsinxcosx, f(x)cos2xsin2xcos2x, 结合余弦函数的图象可知选项 B 正确, 故选:B 8 (5 分)已知函数 f(x)= 1 4x 4+1 2ax 2+ax,则下列结论中正确的是( ) A存在实数 a,使 f(x)有最小值且最小值大于 0 B对任意实数 a,f(x)有最小值且最小值大于 0 C存在正实数 a 和实数 x0,
展开阅读全文