2022年(全国卷)老高考理科数学模拟试卷(14).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2022年(全国卷)老高考理科数学模拟试卷(14).docx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 全国卷 高考 理科 数学模拟 试卷 14 下载 _模拟试题_高考专区_数学_高中
- 资源描述:
-
1、第 1 页(共 19 页) 2022 年(全国卷)老高考理科数学模拟试卷(年(全国卷)老高考理科数学模拟试卷(14) 一选择题(共一选择题(共 12 小题,满分小题,满分 60 分,每小题分,每小题 5 分)分) 1 (5 分)设集合 2 |20AxR xx,|1327 x BxN,则()( RA B ) A(0,1) B1,2 C(2,3 D3 2 (5 分)已知复数 1 2zi, 2 12zi ,则 1 1 2 | z z z 为( ) A1 B2 C2 D5 3 (5 分)已知单位向量, a b的夹角为60,abk与b垂直,则k的值为( ) A2 B 3 2 C 2 2 D 1 2 4
2、(5 分)很多关于大数的故事里(例如“棋盘上的学问” , “64 片金片在三根金针上移动的 寓言” )都涉及 64 2这个数请你估算这个数 64 2大致所在的范围是( )(参考数据: 20.30lg,30.48)lg A 12 (10, 13 10 ) B 19 (10, 20 10 ) C 20 (10, 21 10 ) D 30 (10, 31 10 ) 5 (5 分) 为落实 国家学生体质健康标准 达标测试工作, 全面提升学生的体质健康水平, 某校高二年级体育组教师在高二年级随机抽取部分男生, 测试了立定跳远项目, 依据测试数 据绘制了如图所示的频率直方图已知立定跳远200cm以上成绩为
3、及格,255cm以上成绩 为优秀,根据图中的数据估计该校高二年级男生立定跳远项目的及格率和优秀率分别是( ) A87%,3% B80%,3% C87%,6% D80%,6% 6 (5 分)若某几何体的三视图如图所示,则该几何体的体积是( ) 第 2 页(共 19 页) A 1 3 B 4 6 C 2 6 D 4 12 7(5 分) 过点( , )P x y作圆 22 1: 1Cxy与圆 22 2:( 2)(2)1Cxy的切线, 切点分别为A、 B,若| |PAPB,则 22 xy的最小值为( ) A2 B2 C2 2 D8 8 (5 分)双曲线 22 22 1(0,0) xy ab ab 的左
4、焦点(,0)Fc关于直线 b yx a 的对称点Q在 该双曲线上,则双曲线的离心率为( ) A 5 2 B5 C3 D 3 2 9 (5 分)若 2 1 sin2sin0 2 ,则cos(2)( 4 ) A1 B 2 2 C 2 2 D 2 2 10 (5 分)若x,y满足约束条件 236 0 24 4 xy xy xy a ,且3zxy的最大值为 12,则a的取值 范围为( ) A4a B16a C12a D16a 11 (5 分)已知直线(0)yxkk和曲线( )(0)f xxalnx a相切,则a的取值范围是( ) A(,0)(0,) e B(0, ) e C(0,1)(1,) e D(
5、,0)(1,) e 12 (5 分)已知 235 logloglog1xyz ,则2x,3y,5z的大小关系为( ) A235xyz B325yxz C523zxy D532zyx 第 3 页(共 19 页) 二填空题(共二填空题(共 4 小题,满分小题,满分 20 分,每小题分,每小题 5 分)分) 13 (5 分)某“2020 年宝鸡市防震减灾科普示范学校”组织 4 名男生 6 名女生志愿者到社 区进行防震减灾图片宣讲, 若这些选派学生只考虑性别, 则派往甲社区宣讲的 3 人中至少有 2 个男生概率为 14 (5 分)已知函数( )f x满足(1)(1)0f xfx,且(1)f x是奇函数
6、,有以下四个说 法:( )f x是奇函数;( )f x是周期函数;f(1)0;(1)f x是奇函数则上述 说法正确的是 15 (5 分)已知等比数列 n a中, 2 1a , 5 8a ,则 n a的前 5 项和为 16 (5 分)沿正三角形ABC的中线AD翻折,使点B与点C间的距离为3,若该正三角形 边长为 2,则四面体ABCD外接球表面积为 三解答题(共三解答题(共 5 小题,满分小题,满分 60 分,每小题分,每小题 12 分)分) 17 (12 分)已知函数( )sin(2)sin(2)cos2 66 f xxxx (1)求函数( )f x的最小正周期及单调递减区间; (2)当(0,)
7、 2 x 时,求( )f x的取值范围 18 (12 分)如图,ABC为正三角形,半圆O以线段BC为直径,D是BC上的动点(不 包括点B,)C,平面ABC 平面BCD (1)是否存在点D,使得BDAC?若存在,求出点D的位置;若不存在,请说明理由 (2)若30CBD,求二面角OADC的余弦值 19 (12 分)自从新型冠状病毒爆发以来,美国疫情持续升级,以下是美国 2020 年 4 月 9 日12月 14 日每隔 25 天统计 1 次共 11 次累计确诊人数(万) 日期(月/日) 4 / 09 5 / 04 5/ 29 6 / 23 7 /18 8/13 统计时间顺序x 1 2 3 4 5 6
8、 第 4 页(共 19 页) 累计确诊人数y 43.3 118.8 179.4 238.8 377.0 536.0 日期(月/日) 9 / 06 10 / 01 10/ 26 11/19 11/14 统计时间顺序x 7 8 9 10 11 累计确诊人数y 646.0 744.7 888.9 1187.4 1673.7 (1)将 4 月 9 日作为第 1 次统计,若将统计时间顺序作为变量x,每次累计确诊人数作为 变量y,得到函数关系( ,0) bx yaea b对如表的数据作初步处理,得到部分数据已作近似 处理的一些统计量的值6x ,603.09y , 11 1 1 5.98 11 i i ln
9、y , 11 1 ()()15835.70 ii i xxyy , 11 1 ()()35.10 ii i xx lnylny , 11 2 1 ()110 i i xx , 11 2 1 ()11.90 i i lnylny , 4.06 57.97e, 4.07 58.56e, 4.08 59.15e根据相关数据,确定该函数关系式(函数的参数精确到0.01) (2)经过医学研究,发现新型冠状病毒极易传染,一个病毒的携带者在病情发作之前通常 有长达 14 天的潜伏期,这个期间如果不采取防护措施,则感染者与一位健康者接触时间超 过 15 秒,就有可能传染病毒如果一位新型冠状病毒的感染者传染给他
10、人的概率为 0.3,在 一次36人的家庭聚餐中, 只有一位感染者参加了聚餐, 记余下的人员中被感染的人数为X, 求X k最有可能(即概率最大)的值是多少 20 (12 分)在平面直角坐标系中,曲线:( , )0F x y和函数 2 1 ( ) 4 f xx的图象关于点(1,2) 对称 (1)函数 2 1 ( ) 4 f xx的图象和直线4yxk交于A、B两点,O是坐标原点,求证: 2 AOB ; (2)求曲线的方程; (3)对于(2) ,依据课本章节圆锥曲线的抛物线的定义,求证:曲线为抛物线 21 (12 分)已知函数 432 ( ) 46 ab f xxxcxmxlnx ()当1ac,0b
11、时,( )f x在定义域上单调递增,求m的取值范围; ()当0ac,1b 时,( )f x存在两个极值点 1 x, 2 x,求证: 12 2xx 四解答题(共四解答题(共 1 小题,满分小题,满分 10 分,每小题分,每小题 10 分)分) 第 5 页(共 19 页) 22 (10 分)在平面直角坐标系中,曲线C的参数方程为 cos ( 1sin x y 为参数) ,以坐标原 点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin()3 3 (1)求曲线C的普通方程和直线l的直角坐标方程; (2)射线OP的极坐标方程为 6 ,若射线OP与曲线C的交点为A(异于点)O,与直 线l的
12、交点为B,求线段AB的长 五解答题(共五解答题(共 1 小题)小题) 23已知函数( ) |1| 2|f xxxa (1)当2a 时,求( )f x的最小值; (2)若函数在区间 1,1上递减,求a的取值范围 第 6 页(共 19 页) 2022 年(全国卷)老高考理科数学模拟试卷(年(全国卷)老高考理科数学模拟试卷(14) 参考答案与试题解析参考答案与试题解析 一选择题(共一选择题(共 12 小题,满分小题,满分 60 分,每小题分,每小题 5 分)分) 1 (5 分)设集合 2 |20AxR xx,|1327 x BxN,则()( RA B ) A(0,1) B1,2 C(2,3 D3 【
13、解答】解:0A,2,|031BxNx,2,3, ( RA ,0)(2,),()3 RA B 故选:D 2 (5 分)已知复数 1 2zi, 2 12zi ,则 1 1 2 | z z z 为( ) A1 B2 C2 D5 【解答】解:因为复数 1 2zi, 2 12zi , 所以 1 1 2 2(2)( 12 ) 2222 125 ziii ziiii zi , 所以 1 1 2 | z z z 为 2 故选:C 3 (5 分)已知单位向量, a b的夹角为60,abk与b垂直,则k的值为( ) A2 B 3 2 C 2 2 D 1 2 【解答】解:单位向量, a b的夹角为60, 1 1 1
14、 cos60 2 a b , abk与b垂直,( 2 )10 2 abba bb k kk,2k, 故选:A 4 (5 分)很多关于大数的故事里(例如“棋盘上的学问” , “64 片金片在三根金针上移动的 寓言” )都涉及 64 2这个数请你估算这个数 64 2大致所在的范围是( )(参考数据: 20.30lg,30.48)lg A 12 (10, 13 10 ) B 19 (10, 20 10 ) C 20 (10, 21 10 ) D 30 (10, 31 10 ) 【解答】解:设 64 2N, 两边同时取常用对数得: 64 2lglgN, 第 7 页(共 19 页) 642lglgN,
15、64 0.3019.2lgN, 19.2 10N, 故选:B 5 (5 分) 为落实 国家学生体质健康标准 达标测试工作, 全面提升学生的体质健康水平, 某校高二年级体育组教师在高二年级随机抽取部分男生, 测试了立定跳远项目, 依据测试数 据绘制了如图所示的频率直方图已知立定跳远200cm以上成绩为及格,255cm以上成绩 为优秀,根据图中的数据估计该校高二年级男生立定跳远项目的及格率和优秀率分别是( ) A87%,3% B80%,3% C87%,6% D80%,6% 【解答】 解: 由频率分布直方图得立定跳远255cm以上的频率为:0.003200.06, 即为6% 则立定跳远200cm以上
16、, 5 1(0.0030.014)200.87 20 ,即及格率为87%, 故选:C 6 (5 分)若某几何体的三视图如图所示,则该几何体的体积是( ) A 1 3 B 4 6 C 2 6 D 4 12 【解答】解:根据几何体的三视图转换为直观图为:该几何体为由一个三棱锥体和一个 1 4 圆 第 8 页(共 19 页) 锥组成的几何体; 其中三棱锥体的一个面为腰长为 1 的等腰直角三角形, 对应的高为 2, 圆锥的底面半径为 1, 高为 1, 则该几何体的体积为: 2 11114 11 1 2 433212 V 故选:D 7(5 分) 过点( , )P x y作圆 22 1: 1Cxy与圆 2
17、2 2:( 2)(2)1Cxy的切线, 切点分别为A、 B,若| |PAPB,则 22 xy的最小值为( ) A2 B2 C2 2 D8 【解答】解:易知 22 1: 1Cxy与圆 22 2:( 2)(2)1Cxy的半径都为 1, 故 22 12 |1,|1PAPCPBPC,由| |PAPB得 12 | |PCPC, 故P在线段 12 C C的中垂线上,由 1(0,0) C, 2(2,2) C,易得中垂线为:1(1)yx ,即 20 xy 当 22 xy的值最小时,原点到该直线的距离为最小值,即 22 2 2 11 故 22 xy的最小值为 2 ( 2)2 故选:B 8 (5 分)双曲线 22
18、 22 1(0,0) xy ab ab 的左焦点(,0)Fc关于直线 b yx a 的对称点Q在 该双曲线上,则双曲线的离心率为( ) A 5 2 B5 C3 D 3 2 【解答】解:设左焦点关于0bxay的对称点为( , )Q x y, 由题意可得 0 22 ya xcb xcy ba , 解得: 22 ba x c , 2ab y c , 即 22 (b a Q c , 2 ) ab c ,而Q在双曲线上, 22 222 2222 ()4 1 baa b a cc b , 整理可得 22 2422 (2)40caaa c,即 422 5ca c, 第 9 页(共 19 页) 整理可得: 2
19、2 5ca,所以离心率5 c e a , 故选:B 9 (5 分)若 2 1 sin2sin0 2 ,则cos(2)( 4 ) A1 B 2 2 C 2 2 D 2 2 【解答】解:因为 2 1 sin2sin0 2 , 所以 2 sincossin0, 所以sin0或sincos, 当sin0时, 2 222 cos(2)(cos2sin2 )(122sincos ) 4222 sin , 当sincos即tan1时, 2 cos(2)(cos2sin2 ) 42 , 22 2 (cossin2sincos ) 2 , 2 22 2 12tan2 () 2112 tan tantan 故选:
20、D 10 (5 分)若x,y满足约束条件 236 0 24 4 xy xy xy a ,且3zxy的最大值为 12,则a的取值 范围为( ) A4a B16a C12a D16a 【解答】解:画出约束条件 236 0 24 4 xy xy xy a 表示的平面区域,如图阴影部分所示; 第 10 页(共 19 页) 目标函数3zxy可化为3yxz, 平移目标函数知,3yxz过点C时,直线在y轴上的截距最小,z取得最大值; 由 4 24 xya xy ,求得 24 ( 7 a C , 16 ) 7 a , 所以z的最大值为 2416 3412 77 max aa za , 解得16a 故选:D 1
21、1 (5 分)已知直线(0)yxkk和曲线( )(0)f xxalnx a相切,则a的取值范围是( ) A(,0)(0,) e B(0, ) e C(0,1)(1,) e D(,0)(1,) e 【解答】解:函数( )(0)f xxalnx a的定义域为(0,), 设直线(0)yxkk和曲线( )(0)f xxalnx a相切于 0 (x, 00 )(0)xx k, ( )1 a fx x ,切线斜率 0 0 ()1 a fx x k, 又切点在曲线( )f x上, 000 0 1 xxalnx a x k k , 整理得 00 0 (1) 1 xalnx a x k k ,解得 0 (1)
展开阅读全文