书签 分享 收藏 举报 版权申诉 / 24
上传文档赚钱

类型4.3.3北师大版七年级数学下册-第4章-三角形-《探索三角形全等的条件-边角边》.ppt

  • 上传人(卖家):春天播种
  • 文档编号:1164279
  • 上传时间:2021-03-11
  • 格式:PPT
  • 页数:24
  • 大小:995.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《4.3.3北师大版七年级数学下册-第4章-三角形-《探索三角形全等的条件-边角边》.ppt》由用户(春天播种)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    探索三角形全等的条件-边角边 4.3 北师大 七年 级数 下册 三角形 探索 全等 条件 边角 下载 _七年级下册_北师大版(2024)_数学_初中
    资源描述:

    1、3 探索三角形全等的条件 第四章 三角形 第3课时 利用“边角边”判定三角形全等 情境引入 学习目标 1探索并正确理解三角形全等的判定方法“SAS”.(重点) 2会用“SAS”判定方法证明两个三角形全等及进行简单的应 用(重点) 3.了解“SSA”不能作为两个三角形全等的条件(难点) 1.回顾三角形全等的判定方法1 三边对应相等的两个三角形全等(可以简写为 “边边边”或“SSS”). 在ABC和 DEF中 ABC DEF(SSS) AB=DE BC=EF CA=FD 2.符号语言表达: A B C D E F 导入新课导入新课 当两个三角形满足六个条件中的3个时,有四种情况: 三角 三边 两边

    2、一角 ? 两角一边 除了SSS外,还有其他情况吗? 讲授新课讲授新课 三角形全等的判定(“边角边”) 一 问题:已知一个三角形的两条边和一个角,那么这两条边与这一 个角的位置上有几种可能性呢? A B C A B C “两边及夹角” “两边和其中一边的对角” 它们能判定两个三角 形全等吗? 尺规作图画出一个ABC,使ABAB,ACAC, AA (即使两边和它们的夹角对应相等). 把画好的ABC 剪下,放到ABC上,它们全等吗? A B C 探究活动探究活动1 1:SASSAS能否判定能否判定的两个三角形全等的两个三角形全等 A B C A D E B C 作法: (1)画DAE=A; (2)在

    3、射线AD上截取 AB=AB,在射线AE上截取 AC=AC; (3)连接BC . 思考: A B C 与 ABC 全等吗? 如何验证? 这两个三角形全等是满 足哪三个条件? 在ABC 和 DEF中, ABC DEF(SAS) 文字语言:文字语言:两边和它们的夹角分别相等的两个三角形全等 (简写成“边角边”或“SAS ”) 知识要点 “边角边”判定方法 几何语言: AB = DE, A =D, AC =AF , A B C D E F 必须是两边 “ 夹 角 ” 例1 :如果AB=CB , ABD= CBD,那么 ABD 和 CBD 全等吗? 分析: ABD CBD. 边: 角: 边: : AB=

    4、CB(已知), ABD= CBD(已知), ? A B C D (SAS) BD=BD(公共边). 典例精析 解: 在ABD 和 CBD中, AB=CB(已知), ABD= CBD(已知), ABDCBD ( SAS). BD=BD(公共边), 变式1: 已知:如图,AB=CB,1= 2. 试说明:(1) AD=CD; (2) DB 平分 ADC. A D B C 1 2 4 3 在ABD与CBD中, 解: ABDCBD(SAS), AB=CB (已知), 1=2 (已知), BD=BD (公共边), AD=CD,3=4, DB 平分 ADC. A B C D 变式2: 已知:AD=CD,DB

    5、平分ADC ,试说明:A=C. 1 2 在ABD与CBD中, 解: ABDCBD(SAS), AD=CD (已知), 1=2 (已证), BD=BD (公共边), A=C. DB 平分 ADC, 1=2. 例2:已知:如图, AB=DB,CB=EB,12, 试说明试说明:A=D. 解: 12(已知), 1+DBC 2+ DBC(等式的性质), 即ABCDBE. 在ABC和DBE中, ABDB(已知), ABCDBE(已证), CBEB(已知), ABCDBE(SAS). A=D(全等三角形的对应角相等). 1 A 2 C B D E 想一想: 如图,把一长一短的两根木棍的一端固定在一起,摆出A

    6、BC.固定住 长木棍,转动短木棍,得到ABD.这个实验说明了什么? B A C D ABC和ABD满足 AB=AB ,AC=AD, B=B,但ABC与 ABD不全等. 探究活动探究活动2 2:SSA能否判定两个三角形全等 画一画: 画ABC 和DEF,使B =E =30, AB =DE =5 cm ,AC =DF =3 cm 观察所得的两个三角形是否全等? A B M C D A B C A B D 有两边和其中一边的对角分别相等的两个三角形不一定全 等. 结论 例3 下列条件中,不能证明ABCDEF的是( ) 典例精析 AABDE,BE,BCEF BABDE,AD,ACDF CBCEF,BE

    7、,ACDF DBCEF,CF,ACDF 解析:要判断能不能使ABCDEF,应看所给出的条件是不是两边和这两边的夹 角,只有选项C的条件不符合,故选C. C 方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角 形不一定全等解题时要根据已知条件的位置来考虑,只具备SSA时是不能判 定三角形全等的 当堂练习当堂练习 1.在下列图中找出全等三角形进行连线. 30 5 cm 30 30 2.如图,AB=DB,BC=BE,欲证ABEDBC,则需要增加的条件是 ( ) A.AD B.EC C.A=C D.ABDEBC D 3.如图,点E、F在AC上,AD/BC,AD=CB,AE=CF. 试说

    8、明:AFDCEB. F A B D C E 解:解: AD/BC, A=C, AE=CF, 在AFD和和CEB中, AD=CB A=C AF=CE AFDCEB(SAS). AE+EF=CF+EF, 即 AF=CE. (已知),), (已证),), (已证),), 4.已知:如图,AB=AC,AD是ABC的角平分线, 试说明:BD=CD. 解: AD是ABC的角平分线, BAD=CAD, 在ABD和ACD中, AB=AC BAD=CAD AD=AD ABDACD(SAS). (已知), (已证), (已证), BD=CD. 已知:如图,AB=AC, BD=CD, 试说明: BAD= CAD.

    9、变式变式1 解: BAD=CAD, 在ABD和ACD中, ABDACD(SSS). AB=AC BD=CD AD=AD (已知), (公共边), (已知), 已知:如图,AB=AC, BD=CD,E为AD上一点, 试说明: BE=CE. 变式变式2 解: BAD=CAD, 在ABD和ACD中, AB=AC BD=CD AD=AD (已知), (公共边), (已知), BE=CE. 在ABE和ACE中, AB=AC BAD=CAD AE=AE (已知), (公共边), (已证), ABDACD(SSS). ABEACE(SAS). 5.如图,已知CA=CB,AD=BD, M,N分别是CA,CB的中点,试说明: DM=DN. 在ABD与CBD中 解: CA=CB (已知) AD=BD (已知) CD=CD (公共边) ACDBCD(SSS) 能力提升 连接CD,如图所示; A=B 又M,N分别是CA,CB的中点, AM=BN 在AMD与BND中 AM=BN (已证) A=B (已证) AD=BD (已知) AMDBND(SAS) DM=DN. 课堂小结课堂小结 边 角 边 内容 有两边及夹角对应相等的两个三 角形全等(简写成 “SAS”) 应用 为证明线段和角相等提供了新的证法 注意 1.已知两边,必须找“夹角” 2. 已知一角和这角的一夹边,必须找 这角的另一夹边

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:4.3.3北师大版七年级数学下册-第4章-三角形-《探索三角形全等的条件-边角边》.ppt
    链接地址:https://www.163wenku.com/p-1164279.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库