书签 分享 收藏 举报 版权申诉 / 47
上传文档赚钱

类型(新教材)2021年高中数学人教B版必修第四册课件:10.3 复数的三角形式及其运算.pptx

  • 上传人(卖家):小豆芽
  • 文档编号:1162697
  • 上传时间:2021-03-10
  • 格式:PPTX
  • 页数:47
  • 大小:1.42MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(新教材)2021年高中数学人教B版必修第四册课件:10.3 复数的三角形式及其运算.pptx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    新教材 2021 年高 学人 必修 第四 课件 10.3 复数 三角 形式 及其 运算 下载 _必修第四册_人教B版(2019)_数学_高中
    资源描述:

    1、10.3 复数的三角形式及其运算 课标阐释 思维脉络 1.知道复数的模和辐角的 定义. 2.会求复数的模和辐角主 值. 3.能求出复数的三角形式. 4.会进行复数三角形式的 乘除运算. 激趣诱思 知识点拨 1.如图,角的终边上一点P(x,y),设P到原点O的距离|OP|=r,那么 怎样用角和r表示x,y? 图 激趣诱思 知识点拨 2.我们知道,复数可以用 a+bi(a,bR)的形式来表示,复数 a+bi 与复 平面内的点 Z(a,b)一一对应,与平面向量 =(a,b)也是一一对应的, 如图,你能用向量 的模 r 和以 x 轴的非负半轴为始边,以向量 所在射线(射线 OZ)为终边的角 来表示复数

    2、 z 吗? 图 激趣诱思 知识点拨 知识点一:复数的三角形式 由下图可以看出,对于复数z=a+bi,有 a = r, b = r. 所以z=a+bi=(rcos )+(rsin )i=r(cos +isin ). 激趣诱思 知识点拨 一般地,任何一个非零复数z=a+bi(a,bR)都可以表示成r(cos + isin )的形式.其中,r是复数z的模,是复数z的辐角.r(cos +isin )叫 做非零复数z=a+bi的三角形式,为了与三角形式区分开来,a+bi叫 做复数的代数形式. 任何一个非零复数z的辐角都有无穷多个,而且任意两个辐角之间 都相差2的整数倍.特别地,在0,2)内的辐角称为z的

    3、辐角主值,记 作arg z,即0arg z2. 激趣诱思 知识点拨 微练习1 出下列复数的辐角主值:- 3i;4;7i;-;-3-3i;-1+ 3i;5-5i. 答案:3 2 ;0; 2; 5 4 ; 2 3 ; 7 4 . 激趣诱思 知识点拨 微练习2 多选题)复数- 3-i的辐角可能是( ) A. 6 B.7 6 C.-5 6 D.19 6 答案:BCD 解析:因为复数- 3-i 的辐角为7 6 +2k,且当 k=0 时,为7 6 ;当 k=-1 时, 为-5 6 ,当 k=1 时,为19 6 ,不存在 6的情况. 激趣诱思 知识点拨 微练习3 已知复数: -1 2 cos 2 3 + i

    4、sin 2 3 ;cos - 3 5 +isin - 3 5 ; 2(cos 90+isin 30);4 sin 7 2 + icos 7 2 ; 2(cos 78-isin 78). 其中,是三角形式的个数为( ) A.1 B.2 C.3 D.4 激趣诱思 知识点拨 答案:A 解析:中,不满足模r0;中,满足复数三角形式的特征;中,不 满足同一个角;中,不满足i与sin 相乘;中,不满足cos 与isin 之间用加号连接.综上可知,只有是复数的三角形式.故选A. 激趣诱思 知识点拨 知识点二:复数的三角形式与代数形式的互化 1.复数的三角形式z=r(cos +isin )化为复数的代数形式

    5、z=a+bi(a,bR),只要计算出三角函数值(应用a=rcos ,b=rsin )即 可. 2.复数的代数形式z=a+bi(a,bR)化为复数的三角形式一般步骤: (1)求复数的模:r= 2+ 2; (2)由cos = (或tan = )及点(a,b)所在象限求出复数的一个辐角(一 般情况下,只需求出复数的辐角主值即可); (3)写出复数的三角形式. 激趣诱思 知识点拨 3.每一个不等于零的复数有唯一的模与辐角主值,并且由它的模与 辐角主值唯一确定.因此,两个非零复数相等当且仅当它们的模与 辐角主值分别相等,即z1=z2 1 = 2, arg 1= arg 2. 激趣诱思 知识点拨 名师点析

    6、 复数三角形式的判断依据和变形步骤 1.依据:三角形式的结构特征“模非负,角相同,余弦前,加号连”. 2.步骤:首先确定复数z的对应点所在象限,其次判断是否要变换三 角函数名称,最后确定辐角.可简记为“定点定名定角”. 激趣诱思 知识点拨 微思考1 把一个复数表示成三角形式时,辐角一定要取主值吗? 提示:不一定,例如 2cos - 4 +isin - 4 也是 1-i 的三角形式. 微思考2 每一个复数都有唯一的模与辐角主值吗? 提示: 不一定,复数0的辐角主值有无数个,每一个不等于零的复数 才有唯一的模与辐角主值. 激趣诱思 知识点拨 微练习1 两个复数z1,z2的模与辐角分别相等,是z1=

    7、z2成立的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案:A 解析:当两个复数z1,z2的模与辐角分别相等时,一定可以推出z1=z2, 充分性成立;但当z1=z2时,不一定非要z1,z2的辐角相等,它们可以相 差2的整数倍,故必要性不成立.综上,两个复数z1,z2的模与辐角分 别相等,是z1=z2成立的充分不必要条件.故选A. 激趣诱思 知识点拨 微练习2 把下列复数表示成代数形式: (1)10 cos 3 2 + isin 3 2 ;(2)4 cos 5 6 + isin 5 6 解:(1)10 cos 3 2 + isin 3 2 =10cos

    8、 3 2 + 10sin 3 2 i =100+10(-1)i=-10i. (2)4 cos 5 6 + isin 5 6 =4cos 5 6 + 4sin 5 6 i=4 - 3 2 +4 1 2i =-2 3+2i. 激趣诱思 知识点拨 知识点三:复数三角形式的乘法及运算律 1.复数三角形式的乘法 若z1=r1(cos 1+isin 1),z2=r2(cos 2+isin 2),则 z1z2=r1r2cos(1+2)+isin(1+2).这就是说,两个复数相乘,积的模等 于各复数的模的积,积的辐角等于各复数的辐角的和.简单地说,两 个复数三角形式相乘的法则为:模数相乘,辐角相加. 激趣诱思

    9、 知识点拨 2.复数乘法运算的几何意义 两个复数 z1,z2相乘时,先分别画出与 z1,z2对应的向量1 ,2 ,然后 把向量1 绕点 O 按逆时针方向旋转角 2(如果 21,应 伸长;0r21,应缩短;r2=1,模长不变),得到向量 , 表示的复数就 是积 z1z2.这是复数乘法的几何意义. 激趣诱思 知识点拨 3.复数的三角形式乘法法则有如下推论 (1)有限个复数相乘,结论亦成立,即z1z2zn=r1(cos 1+isin 1) r2 (cos 2+isin 2)rn(cos n+isin n) =r1r2rncos(1+2+n)+isin(1+2+n). (2)当z1=z2=zn=z,即

    10、r1=r2=rn=r,1=2=n=时,zn= r(cos +isin )n=rncos(n)+isin(n).这就是复数三角形式的乘方 法则,即:模数乘方,辐角n倍. (3)在复数三角形式的乘方法则中,当r=1时,则有(cos +isin )n= cos n+isin n.这个公式叫做棣莫弗公式. 激趣诱思 知识点拨 微思考1 使用复数的三角形式进行运算的条件是什么,辐角要求一定是主值 吗? 提示:使用复数的三角形式进行运算的条件是复数必须是三角形式 的标准式,辐角不要求一定是主值. 微思考2 两个复数的积仍然是一个复数吗?任意多个复数的积呢? 提示: 两个复数的积仍然是一个复数,可推广到任意

    11、多个复数,任意 多个复数的积仍然是一个复数. 激趣诱思 知识点拨 微练习 计算下列各式,并把结果化为代数形式. (1) 2 cos 12 + isin 12 3 cos 5 6 +isin5 6 ; (2)1 2 cos 6 + isin 6 8 cos 3 4 +isin3 4 . 解:(1) 2cos 12+isin 12 3 cos 5 6 +isin 5 6 = 2 3 cos 12 + 5 6 + isin 12 + 5 6 = 6 cos 11 12 + isin 11 12 = 6 -cos 12 + isin 12 = 6 - 2+ 6 4 + 6- 2 4 i =-3+ 3

    12、2 + 3- 3 2 i. 激趣诱思 知识点拨 (2)1 2 cos 6 + isin 6 8 cos 3 4 + isin 3 4 =1 28 cos 6 + 3 4 + isin 6 + 3 4 =4 cos 11 12 + isin 11 12 =4 - 2+ 6 4 + 6- 2 4 i =- 2 6+( 6 2)i. 激趣诱思 知识点拨 知识点四:复数三角形式的除法及运算律 1.复数三角形式的除法运算 若z1=r1(cos 1+isin 1), z2=r2(cos 2+isin 2), 则 z1z2=1 2cos(1-2)+isin(1-2). 这就是说,两个复数相除,商的模等于被除

    13、数的模除以除数的模所 得的商,商的辐角等于被除数的辐角减去除数的辐角所得的差.简 单地说,两个复数三角形式相除的法则为:模数相除,辐角相减. 激趣诱思 知识点拨 2.复数除法运算的几何意义 两个复数 z1,z2相除时,先分别画出与 z1,z2对应的向量1 ,2 ,然后 把向量1 绕点 O 按顺时针方向旋转角 2(如果 21,应缩 短;0r21,应伸长;r2=1,模长不变),得到向量 , 表示的复数就是 商 z1z2.这是复数除法的几何意义. 激趣诱思 知识点拨 微练习1 计算下列各式: (1)6 cos 4 3 + isin 4 3 2 cos5 6 +isin5 6 ; (2)3(cos 2

    14、70+isin 270)1 3cos(-90)+isin(-90). 解:(1)原式=3cos(4 3 5 6 )+isin(4 3 5 6 ) =3 cos 2 + isin 2 =3(0+i)=3i. (2)原式=9(cos 360+isin 360)=9(1+0)=9. 激趣诱思 知识点拨 微练习2 设 z=- 2 2 6 2 i 对应的向量为 ,将 绕点 O 按顺时针方向旋转 120,然后将所得向量的模伸长为原来的2倍,求所得向量对应的复 数.(用代数形式表示) 解:z=- 2 2 6 2 i= 2 - 1 2 - 3 2 i = 2(-cos 60-isin 60)= 2(cos 2

    15、40+isin 240). 将 绕点 O 按顺时针方向旋转 120,然后将所得向量的模伸长为 原来的 2倍,则所得向量对应的复数为 2(cos 240+isin 240) 1 2(cos 120+isin 120)=2 2(cos 120+isin 120) =2 2(-1 2 + 3 2 i)=- 2 + 6i. 探究一 探究二 探究三 探究四 素养形成 当堂检测 复数的模与辐角复数的模与辐角 例 1(1)若复数 z 满足 - 1 =1,当复数 z 的辐角为 30时,复数 z 的模 是( ) A.1 B.2 C.3 D.4 (2)已知复数 z=1+ 3i,则复数 2-+4 2- 的辐角主值是

    16、( ) A. 3 B. 2 C.2 3 D.3 2 探究一 探究二 探究三 探究四 素养形成 当堂检测 答案:(1)A (2)C 解析:(1)设 z=r(cos 30+isin 30),代入 - 1 =1,得 (cos30 + isin30)- 1 (cos30+isin30) =1, 解得 r=1,所以复数 z 的模是 1. 故选 A. (2)因为 2-+4 2- = (1+ 3i)2-(1+ 3i)+4 2-(1+ 3i) =1+ 3i 1- 3i =-1 2 + 3 2 i=cos 2 3 +isin 2 3 , 所以复数 2-+4 2- 的辐角主值为2 3. 故选 C. 探究一 探究二

    17、 探究三 探究四 素养形成 当堂检测 变式训练 1(1)设复数 z 满足 -1 = 1 2,arg -1 = 3,则 z=( ) A.1- 3 3 i B.1+ 3 3 i C.1- 2 2 i D.1+ 2 2 i (2)已知复数z=1-2i,= 2 +i + 1,则的辐角主值为 . 探究一 探究二 探究三 探究四 素养形成 当堂检测 答案:(1)B (2)5 4 解析:(1)由已知得-1 = 1 2 cos 3 + isin 3 , 即 1-1 = 1 4 + 3 4 i,即1 = 3 4 3 4 i, 所以 z= 4 3( 3-i) = 3 3 ( 3+i)=1+ 3 3 i. 故选 B

    18、. (2)z=1-2i, = 2 +i + 1 = 2 1-2i+i-(2+2i) = 2(1+i) (1-i)(1+i)-(2+2i)=-1-i = 2 - 2 2 - 2 2 i = 2 cos 5 4 + isin 5 4 , 的辐角主值为5 4 . 探究一 探究二 探究三 探究四 素养形成 当堂检测 复数的三角形式与代数形式的互化复数的三角形式与代数形式的互化 例2将下列复数化为三角形式: (1)-1- 3i;(2)ai(aR). 解:(1)-1- 3i=2 - 1 2 - 3 2 i =2 cos 4 3 + isin 4 3 . (2)当 a0 时,ai=a cos 2 + isi

    19、n 2 ; 当 a0 时,ai=-a cos 3 2 + isin 3 2 . 探究一 探究二 探究三 探究四 素养形成 当堂检测 变式训练 2将下列复数化为三角形式: (1)-cos 5+isin 5;(2)sin +icos . 解:(1)-cos 5+isin 5 =cos - 5 +isin - 5 =cos 4 5 +isin4 5 . (2)sin +icos =cos 2 - +isin 2 - . 探究一 探究二 探究三 探究四 素养形成 当堂检测 复数乘、除运算及其几何意义复数乘、除运算及其几何意义 例 3(1)在复平面内,把复数 3- 3i 对应的向量按顺时针方向旋转 3,

    20、所 得向量对应的复数是( ) A.2 3 B.-2 3i C. 3-3i D.3+ 3i (2)复数 z= 2 cos5 6 +isin5 6 5 3-i 的辐角主值为 . 探究一 探究二 探究三 探究四 素养形成 当堂检测 答案:(1)B (2) 3 解析:(1)由题意知复数 3- 3i对应的向量按顺时针方向旋转 3, 旋转后的复数为(3- 3i)cos(- 3)+isin(- 3)=(3- 3i) 1 2 - 3i 2 =-2 3i. 故选 B. (2)复数 z= 2 cos5 6 +isin5 6 5 3-i = 2 cos25 6 +isin25 6 2 cos11 6 +isin11

    21、 6 =cos 25 6 - 11 6 +isin 25 6 - 11 6 =cos7 3 +isin7 3 =cos 3+isin 3, 可得复数 z的辐角主值为 3. 探究一 探究二 探究三 探究四 素养形成 当堂检测 变式训练 3(1)如果 2 , ,那么复数(1+i) (cos +isin )的辐角主 值是( ) A.+9 4 B.+ 4 C.- 4 D.+7 4 (2)4(cos +isin )2 cos 3 + isin 3 =( ) A.1+ 3i B.1- 3i C.-1+ 3i D.-1- 3i 探究一 探究二 探究三 探究四 素养形成 当堂检测 答案:(1)B (2)C 解

    22、析:(1)(1+i)(cos +isin ) = 2 cos 4 + isin 4 (cos +isin ) = 2 cos 4 + + isin 4 + . 由 2 , ,得 4+ 3 4 , 5 4 , 所以复数(1+i)(cos +isin )的辐角主值是 4+. 故选 B. (2)4(cos +isin )2 cos 3 + isin 3 =2 cos - 3 + isin - 3 =2 cos 2 3 + isin 2 3 =-1+ 3i. 故选 C. 探究一 探究二 探究三 探究四 素养形成 当堂检测 复数乘、除运算的综合应用复数乘、除运算的综合应用 例 4 设 =z+ai(aR)

    23、,z=(1-4i)(1+i)+2+4i 3+4i ,且| 2,则 的辐角 主 值的取值范围是 . 答案: 0, 4 7 4 ,2 探究一 探究二 探究三 探究四 素养形成 当堂检测 解析:z=(1-4i)(1+i)+2+4i 3+4i =5-3i+2+4i 3+4i = 7+i 3+4i=1-i. =z+ai=1-i+ai=1+(a-1)i,且| 2, 1 + (-1)2 2,解得 0a2, -1a-11,-1tan 1. 又 的实部是 1, 的辐角 的终边在第一、 四象限或在 x 轴的正 半轴上,且 的主值在0,2)中, 0arg 4,或 7 4 arg 2. 的辐角 的主值取值范围是 0,

    24、 4 7 4 ,2 . 探究一 探究二 探究三 探究四 素养形成 当堂检测 变式训练 4已知复数z满足z +2i=3+ai(aR),且 2arg z,则实 数 a 的取值范围是( ) A.(-2 2,0) B.(-2 3,0) C.(0,2 2) D.(0,2 3) 探究一 探究二 探究三 探究四 素养形成 当堂检测 答案:B 解析:由 z +2i=3+ai, 解得 = +(|2-3)i 2 ,z= 2 + 3-|2 2 i. 2arg z, 0, |2 3. 又|z|2= 2 4 + (3-|2)2 4 , a2=-|z|4+10|z|2-9=-(|z|2-5)2+16. |z|23,a21

    25、2, 解得-2 3a2 3. 结合 a0). 2.如果不符合即利用诱导公式转化为三角形式. 探究一 探究二 探究三 探究四 素养形成 当堂检测 1. cos 6 + isin 6 cos 3 + isin 3 =( ) A.1 B.-1 C.i D.-i 答案:C 解析: cos 6 + isin 6 cos 3 + isin 3 = cos 6 + 3 + isin 6 + 3 =cos 2+isin 2 =i. 故选 C. 探究一 探究二 探究三 探究四 素养形成 当堂检测 2.8i2(cos 45+isin 45)= . 答案:2 2+2 2i 解析:8i2(cos 45+isin 45

    26、) =8(cos 90+isin 90)2(cos 45+isin 45) =4cos(90-45)+isin(90-45) =4(cos 45+isin 45) =2 2+2 2i. 探究一 探究二 探究三 探究四 素养形成 当堂检测 3. 1 2 + 3 2 i 3(cos 120-isin 300)= . 答案:1 6 3 6 i 解析: 1 2 + 3 2 i 3(cos 120-isin 300) =(cos 60+isin 60)3(cos 120+isin 120) =1 3cos(60-120)+isin(60-120) =1 3cos(-60)+isin(-60) =1 3 1 2 - 3 2 i =1 6 3 6 i. 探究一 探究二 探究三 探究四 素养形成 当堂检测 4.计算: (1+ 3i)5 16 2 cos 6-isin 6 . 解:原式= 2 cos 3+isin 3 5 16 2 cos - 6 +isin - 6 = 25 16 2 cos 5 3 + 6 + isin 5 3 + 6 = 2 cos 11 6 + isin 11 6 = 2 3 2 - 1 2 i = 6 2 2 2 i.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(新教材)2021年高中数学人教B版必修第四册课件:10.3 复数的三角形式及其运算.pptx
    链接地址:https://www.163wenku.com/p-1162697.html
    小豆芽
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库