(2021版 九年级数学培优讲义)专题03 根的检测器.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(2021版 九年级数学培优讲义)专题03 根的检测器.doc》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021版 九年级数学培优讲义 【2021版 九年级数学培优讲义】专题03 根的检测器 2021 九年级 数学 讲义 专题 03 检测器 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、专题专题 3 根的检测器根的检测器 阅读与思考阅读与思考 一元二次方程的根的判别式是揭示根的性质与系数间联系的一个重要定理,是解直接或间接与 一元二次方程相关问题的有力工具,其主要应用于以下几个方面: 1、判断方程实根的情况; 2求方程中字母系数的值与字母间的关系、字母的取值范围; 3证明等式或不等式; 4利用一元二次方程必定有解的代数模型,证明几何存在性问题 许多表面与一元二次方程无关的数学问题,可以通过构造一元二次方程,把原问题转化为讨论方程的 根的性质,然后用判别式来解,这是运用判别式解题的技巧策略 例题与求解例题与求解 【例【例 1】 如果方程 43222 69320 xxxpxp有且
2、仅有一个实数根(相等的两个实数根算作一 个) ,则p的值为 【例【例 2】 已知三个关于x的方程: 2 0 xxm, 2 (1)210mxx 和 2 (2)210mxx , 若其中至少有两个方程有实根,则实数m的取值范围是( ) A2m B 1 12 4 mm或 C1m D 1 1 4 m 【例【例 3】已知(2,3)P是反比例函数 k y x 图象上的点 (1)求过点 P 且与双曲线 k y x 只有一个公共点的直线解析式; (2)Q 是双曲线 k y x 在第三象限这一分支上的动点,过点 Q 作直线,使其与双曲线 k y x 只有一 个公共点,且与x轴,y轴分别交于 C,D 两点,设(1)
3、中求得的一直线与x轴,y轴分别交与 A,B 两 点,试判断 AD,BC 的位置关系 【例【例 4】已知, ,a b c满足0,8,0abcabcc且,求证 3 3 4c 【例【例 5】 已知关于x的方程 22 (31)220 xkxkk. (1)求证:无论k取何实数值,该方程总有实数根; (2)若等腰三角形 ABC 的一边长6a,另两边长, b c恰好是这个方程的两个实数根,求ABC 的 周长. 【例【例 6】已知XYZ是直角边长为 1 的等腰直角三角形(Z90) ,它的三个顶点分别在等腰直角 三角形 ABC(C90)的三边上求ABC直角边长的最大可能值 能力训练能力训练 A 级级 1若关于x
4、的一元二次方程 2 20 xxm有两个实数根,则m的取值范围是 2关于x的方程 2 (2)20axax只有一解(相同的解算一解) ,则a的值为 3设, ,a b c是ABC三边,且关于x的方程 22 ()()20(0)c xnb xnnaxn有两个相等的 实数根,则ABC是 三角形 4方程 22 3330 xxyyxy的实数解为 5关于x的一元二次方程 2 (21)10 xkxk 的根的情况是 ( ) A有两个相等的实数根 B有两个不相等的实数根 C有两个实数根 D没有实数根 6 如 果 关 于x的 方 程 2 2 (2 )50m xmxm没 有 实 数 根 , 那 么 关 于x的 方 程 2
展开阅读全文