(2021版 九年级数学培优讲义)专题04根与系数关系.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(2021版 九年级数学培优讲义)专题04根与系数关系.doc》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021版 九年级数学培优讲义 【2021版 九年级数学培优讲义】专题04 根与系数关系 2021 九年级 数学 讲义 专题 04 系数 关系 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、专题专题 04 根与系数关系根与系数关系 阅读与思考阅读与思考 根与系数的关系称为韦达定理,其逆定理也成立,是由 16 世纪的法国数学家韦达 所发现的韦达定 理形式简单而内涵丰富,在数学解题中有着广泛的应用,主要体现在: 1求方程中字母系数的值或取值范围; 2求代数式的值; 3结合根的判别式,判断根的符号特征; 4构造一元二次方程; 5证明代数等式、不等式 当所要求的或所要证明的代数式中的字母是某个一元二次方程的根时,可先利用 根与系数的关系找 到这些字母间的关系,然后再结合已知条件进行求解或求证,这是利用根与系数的关系解题的基本思 路,需要注意的是,应用根与系数的关系的前提条件是一元二次方程
2、有两个实数根,所以,应用根与系数 的关系解题时,必须满足判别式0 例题与求解例题与求解 【例【例 1】 设关于x的二次方程 22 (4)(21)10mxmx (其中m为实数)的两个实数根的倒数和为 s,则s的取值范围是_. 【例【例 2】 如果方程 2 (1)(2)0 xxxm的三个根可以作为一个三角形的三边长,那么,实数m的 取 值范围是_. A01m B 3 4 m C 3 1 4 m D 3 1 4 m 【例【例 3】已知,是方程 2 780 xx的两根,且不解方程,求 2 2 3 的值 【例【例 4】 设实数, s t分别满足 22 199910,99190sstt 并且1st ,求
3、41sts t 的值 【例【例 5】 (1)若实数, a b满足 2 58aa, 2 58bb,求代数式 11 11 ba ab 的值; (2)关于, ,x y z的方程组 32 236 xyza xyyzzx 有实数解( , , )x y z,求正实数a的最小值; (3)已知, x y均为实数,且满足17xyxy, 22 66x yxy,求 432234 xx yx yxyy 的值 【例【例 6】 , ,a b c为实数,0ac,且2350abc,证明一元二次方程 2 0axbxc有大 于 3 5 而小于 1 的根 能力训练能力训练 A 级级 1已知m,n为有理数,且方程 2 0 xmxn有
4、一个根是52,那么mn= 2已知关于x的方程 2 30 xxm的一个根是另一个根的 2 倍,则m的值为 3当m= 时,关于x的方程 22 8(26)210 xmmxm 的两根互为相反数; 当 时,关于x的方程 22 240 xmxm的两根都是正数;当 时,关 于m的方程 2 3280 xxm有两个大于2的根 4对于一切不小于 2 的自然数n关于x的一元二次方程 22 (2)20 xnxn的两根记为 , nn a b(2)n 则 223320072007 111 (2)(2)(2)(2)(2)(2)ababab 5 设 12 ,x x是方程 22 2(1)(2)0 xkxk的两个实根, 且 12
展开阅读全文