(吃透中考数学29个几何模型)模型22 三等角相似模型.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(吃透中考数学29个几何模型)模型22 三等角相似模型.docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 吃透中考数学29个几何模型 【吃透中考数学29个几何模型】模型22 三等角相似模型 吃透 中考 数学 29 几何 模型 22 等角 相似 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、专题专题 22 22 三等角相似模型三等角相似模型 一、单选题一、单选题 1如图,在矩形ABCD中,6BC ,E是BC的中点,连接AE, 3 tan 4 BAE,P是AD边上一动 点,沿过点P的直线将矩形折叠,使点D落在AE上的点D处,当APD是直角三角形时,PD的值为 ( ) A 2 3 或 6 7 B 8 3 或 24 7 C 8 3 或 30 7 D10 3 或18 7 【答案】B 【分析】 根据矩形的性质得到 AD=BC=6,BAD=D=B=90 ,根据勾股定理得到 AE= 2222 435ABBE , 设 PD=PD=x, 则 AP=6-x, 当 APD是直角三角形时, 当ADP=9
2、0时, 当APD=90时,根据相似三角形的性质列出方程,解之即可得到结论 【详解】 解:在矩形 ABCD中,AB=4,BC=6, AD=BC=6,BAD=D=B=90 , E 是 BC 的中点, BE=CE=3, AE= 2222 435ABBE , 沿过点 P 的直线将矩形折叠,使点 D 落在 AE 上的点 D处, PD=PD, 设 PD=PD=x,则 AP=6-x, 当 APD是直角三角形时, 当ADP=90时, ADP=B=90 , ADBC, PAD=AEB, ABEPDA, APPD AEAB , 6 54 xx , x= 8 3 , PD= 8 3 ; 当APD=90时, APD=
3、B=90 , PAE=AEB, APDEBA, APPD BEAB , 6 34 xx , x= 24 7 , PD= 24 7 , 综上所述,当 APD是直角三角形时,PD= 8 3 或 24 7 , 故选:B 【点睛】 本题考查了翻折变换 (折叠问题) , 矩形的性质, 相似三角形的判定和性质, 正确的理解题意是解题的关键 2 如图, 正方形 ABCD边长为 4, 边 BC上有一点 E, 以 DE为边作矩形 EDFG, 使 FG 过点 A, 则矩形 EDFG 的面积是( ) A16 2 B8 2 C8 3 D16 【答案】D 【分析】 先利用等角的余角证明ADFEDC, 再根据相似三角形的
4、判定方法证明 ADFCDE, 然后利用相似 比计算 DF与 DE 的关系式,最后根据矩形的面积公式求得矩形的面积便可. 【详解】 解:四边形 ABCD为正方形, ADCD4,ADCC90 , 四边形 EDFG为矩形, EDFF90 , ADF+ADE90 ,ADE+EDC90 , ADFEDC, ADFCDE, ADDF DEDC ,即 4 4 DF DE , DF 16 DE , 矩形 EDFG 的面积为:DEDFDE 16 DE 16 故选:D 【点睛】 本题主要考查了相似三角形的性质,根据矩形的性质求面积是解题重要一步 3如图,在矩形ABCD中,4AB , 5AD ,E、F、G、H分别为
5、矩形边上的点,HF过矩形的中 心O,且HFADE为AB的中点,G为CD的中点,则四边形EFGF的周长为( ) A3 5 B6 5 C8 3 D6 3 【答案】B 【分析】 连接EG,证明四边形EHGF是矩形,再证明AEHDHG,求得AH与DH的长度,由勾股定理求 得EH与HG,再由矩形的周长公式求得结果 【详解】 解:连接EG, 四边形ABCD是矩形, ABCD,/AB CD, E为AB的中点,G为CD的中点, AEDG,/AE DG, 四边形AEGD是平行四边形, ADEG, 矩形是中心对称图形,HF过矩形的中心O EG过点O,且OHOF,OEOG, 四边形EHGF是平行四边形, HFADE
6、G, 四边形EHGF是矩形, 90EHG, 90AD , 90AHEAEHAHEDHG , AEHDHG , AEHDHG , AHAE DGDH , 设AHx,则5DHx, 1 2 2 AEDGAB, 2 25 x x , 解得,1x 或 4, 1AH或 4, 当1AH 时,4DH ,则 22 1 45HEAHAE , 2222 422 5HGDHDG , 四边形EFGH的周长 2 (2 55)6 5; 同理,当4AH 时,四边形EFGH的周长2 (2 55)6 5; 故选:B 【点睛】 本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,关键在于证明四边形EHGF是矩形 4如图,在
7、反比例函数 3 y x 的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限 内有一点C,满足ACBC,当点A运动时,点C始终在函数 k y x 的图象上运动,若5 AC AO ,则k 的值为( ) A6 B12 C18 D24 【答案】B 【分析】 连接 OC,过点 A作 AEx 轴于点 E,过点 C作 CFy轴于点 F,通过角的计算找出AOECOF,结 合“AEO90 , CFO90”可得出 AOECOF, 根据相似三角形的性质得出比例式, 再由5 AC AO , 得出 1 2 AO CO ,可得出 CFOF的值,进而得到 k的值 【详解】 如图,连接 OC,过点 A作 AE
8、x轴于点 E,过点 C作 CFy轴于点 F, 由直线 AB 与反比例函数 3 y x 的对称性可知 A、B 点关于 O点对称, AOBO, 又ACBC, COAB, AOEAOF90 ,AOFCOF90 , AOECOF, 又AEO90 ,CFO90 , AOECOF, AEOEAO CFOFCO , 5 AC AO , 1 2 AO CO , CF2AE,OF2OE, 又AEOE3, CFOF|k|4 312, k 12, 点 C在第二象限, k12, 故选:B 【点睛】 本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,解题的关 键是求出 CFOF12解决
9、该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反 比例函数图象上点的坐标特征找出结论 二、解答题二、解答题 5定义:有两个相邻内角互余的凸四边形称为互余四边形,这两个角的夹边称为互余线 (1)在 ABC 中,AB=AC,AD 是 ABC 的角平分线,E、F分别是 BD,AD上的点,求证:四边形 ABEF 是互余四边形; (2)如图 2,在 5 4的方格纸中,A、B在格点上,请画出一个符合条件的互余四边形 ABEF,使 AB是互 余线,E、F在格点上; (3)如图 3,在(1)的条件下,取 EF中点 M,连接 DM并延长交 AB于点 Q,延长 EF交 AC于点 N,若 N 为
10、 AC 的中点,DE=2BE,如互余线 AB=10,求 BQ的长 【答案】 (1)详见解析; (2)详见解析; (3)3 【分析】 (1) 由等腰三角形的“三线合一“性质可得ADBC, 则可得DAB与DBA互余, 即FAB与EBA互 余,从而可得答案; (2)画出图形即可; (3)先由等腰三角形的“三线合一“性质可得BDCD、DMME,再判定 DBQECN ,从而列出比 例式,将已知线段的长代入即可得解 【详解】 解: (1)ABAC,AD是ABC的角平分线, ADBC, 90ADB, 90DABDBA, FAB与EBA互余, 四边形ABEF是邻余四边形; (2)如图所示,四边形 ABEF即为
11、所求; (答案不唯一) (3)ABAC,AD是ABC的角平分线, BDCD, 2DEBE, 3BDCDBE, 5CECDDEBE, 90EDF,点M是EF的中点, DMME, MDEMED , ABAC, BC , DBQECN , 3 5 BQBD CNCE , AB=10, 10ACAB N为 AC 的中点, 1 5 2 CNAC, 3 55 BQ 3BQ 【点睛】 本题考查了四边形的新定义, 综合考查了等腰三角形的“三线合一“性质、 相似三角形的判定与性质等知识点, 读懂定义并明确相关性质及定理是解题的关键 6如图,在ABC中,10ABAC,15BC ,点D为边BC上一点,且BDCD,点
12、E为AC中 点,ADEB (1)求BD的长 (2)求证:DADE 【答案】 (1)5; (2)证明见解析; 【分析】 (1)先证明出ABDDCE,得出 ABBD DCCE ,假设 BD为 x,则 DC=15-x,代入分式方程求出 BD 的长; (2)由(1)可知BC ,推出ABDDCE,得出结果; 【详解】 (1)10ABAC, BC , ADEB ,180180ADEB, ADBEDCADBBAD,EDCBAD, ABDDCE, ABBD DCCE , E为AC中点, 1 5 2 CEAC, 15BC ,设BDx,则15DCx, 即: 10 155 x x ,解得: 1 5x, 2 10 x
13、 , BDCD, 5BD (2)由(1)可知5BDCE,10ABDC,BC , 在ABD和DCE中, BDCE BC ABDC ,ABD SASDCE DADE 【点睛】 本题考查三角形全等的性质,三角形相似的性质,解题的关键是熟练掌握相关性质并灵活运用 7如图,在ABC中,90ACB,CD是高,BE平分ABC ,BE分别与AC,CD相交于点E, F (1)求证:AEBCFB (2)求证: AEAB CECB (3)若5CE , 2 5EF ,6BD,求AD的长 【答案】 (1)证明见解析; (2)证明见解析; (3) 32 3 【分析】 (1)由题意易得90ACDBCD,进而可知ABCD ,
14、然后有ABECBE,进而问题得 证; (2)由题意易得CFEBCDCBEAABE ,进而有CECF, AEAB CFCB ,进而问题得 证; (3)如图,作CHEF于H,从而易得5EHFH,进而可得3DF ,8CDCFDF,然 后由ACDCBD可进行求解 【详解】 证明: (1)90ACB 90ACDBCD CD为AB边上的高, 90ADC 90AACD ABCD , BE是ABC的平分线, ABECBE AEBCFB; (2)ABECBE,ABCD , CFEBCDCBEAABE CEFAABE , CEFCFE CECF AEBCFB AEAB CFCB AEAB CECB ; (3)如图
15、,作CHEF于H CECF,CHEF 5EHFH , 2222 5( 5)2 5CHECEH 由BFDCFH, DFBD HFCH , 6 52 5 DF 3DF,8CDCFDF, 由ACDCBD ADCD CDBD 8 86 AD 32 3 AD 【点睛】 本题主要考查相似三角形的性质与判定及勾股定理,熟练掌握相似三角形的性质与判定是解题的关键 8如图,四边形 ABCD 中,ADCD,DABACB90 ,过点 D 作 DEAC,垂足为 F,DE 与 AB 相交于点 E (1)求证:AB AFCB CD; (2)已知 AB15 cm,BC9 cm,P 是射线 DE 上的动点设 DPx cm(0
16、 x) ,四边形 BCDP 的面积 为 y cm2 求 y 关于 x 的函数关系式; 当 x 为何值时, PBC 的周长最小,并求出此时 y 的值 【答案】 (1)见解析; (2) 1 96327 2 yxx()(0 x) ;当 25 2 x 时, PBC 的周长最小, 此时 129 2 y 【分析】 (1)由已知条件易证 DCFABC,可得 CDCF ABCB ,即可得 AB AFCB CD; (2)由勾股定理求得 AC=12,即可得 CFAF6,根据四边形 BCDP 的面积= DCP 的面积+ BCP的 面积即可得 y关于 x的函数关系式; 由题意可知 PBC的周长最小,就是 PBPC 最
17、小,当当 P、A、B三点共线时 PBPA最小这时求得 x、y的值即可 【详解】 (1)证明:ADCD,DEAC, DE垂直平分 AC AFCF,DFADFC90 ,DAFDCF DABDAFCAB90 ,CABB90 , DCFDAFB 在 Rt DCF和 Rt ABC中, DFCACB90 ,DCFB DCFABC CDCF ABCB ,即 CDAF ABCB AB AFCB CD (2)解AB15 BC9 ACB90 AC 22 ABBC 22 159 12 CFAF6 y= 1 2 (x+9) 63x27(x0) BC9(定值) , PBC的周长最小,就是 PBPC最小 由(1)可知,点
18、 C 关于直线 DE的对称点是点 A, PBPCPBPA,故只要求 PBPA最小 显然当 P、A、B 三点共线时 PBPA最小 此时 DPDE,PBPAAB 由(1) ,ADFFAE,DFAACB90 ,得 DAFABC 由 EFBC,得 AEBE 1 2 AB15 2 ,EF 9 2 AFBCADAB, 即 69AD15 AD10 Rt ADF中,AD10,AF6,DF8 DEDFFE8 9 2 25 2 当 x 25 2 时, PBC的周长最小,此时 y 129 2 9已知,如图,在矩形 ABCD 中,E 为 AD的中点,EFEC交 AB于 F,连结 FC(ABAE) (1)求证:AEFD
19、CE (2)AEF与ECF是否相似?若相似,证明你的结论;若不相似,请说明理由 (3)设 AB k BC ,是否存在这样的k值,使得AEF与BFC相似?若存在,证明你的结论并求出k的 值;若不存在,说明理由 【答案】 (1)证明见解析; (2)相似,理由见解析; (3)存在,k= 3 2 【分析】 (1)根据直角三角形两锐角互余和等角的余角相等可得DEC=AFE,再根据A=D=90 可证得结论; (2)延长 FE 与 CD的延长线交于 G,证明 Rt AEFRt DEG(ASA) 由全等三角形的性质可得出 EF=EG证明 Rt EFCRt EGC(SAS) 得出AFE=EGC=EFC则可证得结
20、论; (3) 分两种情况讨论, 当AFE=BCF时根据一个三角形最多有一个直角排除, 当AFE=BFC, 设 BC=a, 则 AB=ka,由 AEFBCF,得出 AF= 1 3 ka,BF= 2 3 ka,再借助 AEFDCE即可证明 【详解】 解: (1)EFEC, FEC=90 ,即AEF+DEC=90 , 四边形 ABCD为矩形, A=D=90 , AEF+AFE=90 , DEC=AFE, A=D=90 , AEFDCE; (2) AEFECF证明如下: 延长 FE 与 CD 的延长线交于 G, E 为 AD的中点, AE=DE, AEF=GED,A=EDG, Rt AEFRt DEG
21、(ASA) EF=EG CE=CE,FEC=CEG=90 , Rt EFCRt EGC(SAS) AFE=EGC=EFC 又A=FEC=90 , AEF ECF; (3)存在 k值,使得 AEF与 BFC 相似 理由如下: 假定 AEF与 BFC 相似,则有两种情况: 当AFE=BCF,则有AFE 与BFC 互余,于是EFC=90 ,因此此种情况是不成立的; 当AFE=BFC,使得 AEF与 BFC 相似, 设 BC=a,则 AB=ka, AEFBCF, 1 2 AFAE BFBC =, AF= 1 3 ka,BF= 2 3 ka, AEFDCE, AEAF CDDE =,即 11 32 1
22、2 kaa kaa = , 解得,k= 3 2 【点睛】 本题是四边形综合题,考查了全等三角形的判定与性质,矩形的性质,相似三角形的判定和性质,掌握相 似三角形的判定定理和性质定理,能正确识图是解题的关键 10在ABC中,90ACB, 20AB ,12BC (1) 如图1, 折叠ABC使点A落在AC边上的点D处, 折痕交AC、AB分别于Q、H, 若 9 A B CD H Q SS , 则HQ (2) 如图 2, 折叠ABC使点A落在BC边上的点M处, 折痕交AC、AB分别于E、F 若/FM AC, 求证:四边形AEMF是菱形 (3)如图 3,在(1) (2)的条件下,线段CQ上是否存在点P,使
23、得CMP!和 HQP 相似?若存在,求 出PQ的长;若不存在,请说明理由 【答案】 (1)4; (2)证明见解析; (3)存在,满足条件PQ的值为 32 7 或 8 或 8 3 【分析】 (1)利用勾股定理求出 AC,设 HQx,根据 SABC=9SDHQ,构建方程即可解决问题; (2)由翻折的性质可得 AE=EM,AF=FM,然后证明出 AE=AF即可; (3) 设 AEEMFMAF4m, 则 BM3m, FB5m, 构建方程求出 m的值, 然后根据 QH=4, AQ=16 3 , 求出 QC= 32 3 ,设 PQ=x,分两种情形分别求解即可解决问题 【详解】 (1)如图, 在ABC中,
24、90ACB,20AB ,12BC , 22 201216.AC 设HQx, /HQ BC, AHQABC, AQHQ ACBC ,即 1612 AQx , 4 3 AQx, 9 ABCDHQ SS , 114 16 129 223 xx 整理得: 2 16x , 解得: 1 4x , 2 4x (舍去) , 4HQ (2)如图 由翻折的性质可知:AEEM,AFFM,AFEMFE , /FM AC, AEFMFE , AEFAFE , AE=AF, AEAFMFME, 四边形AEMF是菱形; (3)如图,连接 MP、HP, 设4AEEMFMAFm 则3BMm,5FBm, 4520mm,解得 20
展开阅读全文