书签 分享 收藏 举报 版权申诉 / 191
上传文档赚钱

类型医学数学完整教学课件.ppt

  • 上传人(卖家):金钥匙文档
  • 文档编号:1086645
  • 上传时间:2021-02-14
  • 格式:PPT
  • 页数:191
  • 大小:13.06MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《医学数学完整教学课件.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    医学 数学 完整 教学 课件
    资源描述:

    1、D201 0577-86593350 13958890700 Email 2015101218:30 6A107 : () , 2007.7. , , 2002. 5. 第一章 函数与极限 第一节 函数 ( function ) N Z Q R 区间区间: : . . ,.a bRab bxax , ),(ba bxax , ,ba oxab oxab ( bxax bxax , , ),ba ,(ba ),xaxa ),(bxxb oxa ox b 区间长度的定义区间长度的定义: : (). 3.3.邻域邻域: : . 0, a ( ,).U a ,a . ( ,).U ax axa xa

    2、a a ,a ( ,)0.U axxa , aaxx y, .R)( Dx Dxxfy, )( ,Dx 1. , yx, , yx DxxfyyW),( ; range). ; , (2) (3): . , . (1) . sin sin xx yxy x )1 , 1( : D 2 1 1 x y : 2 1xy : 1,1,():0,1.Df D 2 (1) ( )2ln , ( )lnf xxxx (2) ( ), ( )f xxxx 22 (3) ( )sincos, ( )1f xxxx 定义定义: : ( , )( ), ( ). Cx y yf x xD yf x ox y ),

    3、(yx x y W D 222 ayx ox y ),(yx x y W D ox y ),(yx x y W D ox y ),(yx x y W D 2 21,0 ,( ) 1,0 xx f x xx 12 xy 1 2 xy , , (piecewise function). 1. 1,1 10,2 )( xx xx xfy : )( 2 1 f . )( 1 t f f (x) , f (x) ),0D ),0W 2 1 2 1 2)(f2 )( 1 t f 10 t, 1 1 t 1t , 2 t x y O xy2 xy 1 1 10 sgn00 10 x yxx x . , (,

    4、)D . 1 ,0 , 1 W xxx s g n 1 -1 x y O 1. ,Dx ,0M ,)(Mxf )(xf. M , f (x)D. ,y= sinx1y 1 01 , x y 1 1, x 1 1 x 1 1, x ,xR y = M 2121 ,xxIxx , )()( 21 xfxf )(xf I , )()( 21 xfxf )(xf I ; . 1 x 2 x x y O 2 yx , (-,0) . (0,+) 2 yx. (-,+) 3. ,Dx ,Dx f (x) ; f (x) . f (x)=x2+2R f (x)=x3R (-,0)U(0,+) (-,+) (

    5、-,+) . 2:( ),( ) ; f xRf x ( )( )(), ( )( )()g xf xfx h xf xfx ( )( ) ( ) 2 g xh x f x 4. ,0,LDx ,DLx )(xf, xO2 y 2 L ( ). , y=sin x 2 y=tan x : . , Cxf)( (1) , , Dxxfy, )( Wxxfy ,)( 1 1 f f . 10yf (x) ; (2) 20 . , ),(,exy x , , . x y O )(xfy xy ),(abQ () () . 30 yf (x) 1. ; ; ; ; . (1) ( power func

    6、tion ): yx :. a -3 y = x ; 0, x=0. , 13 yx 0 , 1 2 yx 1 2 yx 1 3 yx 0,; 1, 20 x. 30 x=0,y=1,(0,1). (2) exponential function (0,1) x yaaa (,) 0,+ 0a1 0a 0 x = 0 x 0 x y O 1 1 2. x y O4 12 321 P18 1 213 3 4 13 6 2 2 1 (1)sin 1 y x 2 2sin (2)ln(tane) xx y (1) 2 2 1 (1)sin 1 y x 2 yu sinuv 1 2 vw 2 1wx

    7、1 22 2 ,sin ,1yu uv vwwx 2 2sin (2)ln(tane) xx y ln ,yu tanuv e w v 2 2sinwxx 2 ln ,tan ,e ,2sin w yu uv vwxx 2 2,0,1 ( ), ( ), 1,0,1 ( ). x xxex f xx xxxx fx ( ) ,( )1 ( ) ( ),( )1 x ex fx xx 0 1( )1,x , 0 x ( )21,xx ;20 x, 0 x 2 ( )1 1,xx ; 1 x ,1)(20 x , 0 x , 12)( xx ;2 x, 0 x, 11)( 2 xx ; 01 x

    8、. 2, 1 20 01 1 , , 2 , )( 2 1 2 2 xx x x x e x e xf x x 第二节 极限 “ 6n r 1 12sin 6 lr : 1 l .6 n ln 12sin 6 n ln r n :6 n ln 2 24sin 12 lr : 2 l :, 3 , 2 , 1 , 21n xxx (1) n x n x. . ;, 5 1 , 4 1 , 3 1 , 2 1 , 1 ;, 2 1 , 8 1 , 4 1 , 2 1 n ) 1( n n 1 2n ., 21 n xxx 1 x 2 x 3 x 4 x n x xnn ).(nfxn ;,)1(

    9、, 1 , 1, 1 1 n ) 1( 1 n 111 2,1+,1+,1+,; 234 1 1+ n n n n 1 ) 1( 1 n xn “ . 1 ) 1( 1, n n n xn xn n a, , axn n lim xn a xn , xna, () n xa n 1 (1)lim; 3 n n (2) lim1 n n (3) lim2n n 1 (1)lim0 3 n n (2) lim1 n n (3) lim2n n n n qlim 1q 1q 11qq 0, 1, , 2 147(32) (2)lim; n n n (1)lim(1); n nn (1)lim(1)

    10、n nn (1)(1) lim (1) n nnnn nn 1 0 2 147(32) (2)lim n n n 2 2 3 lim 2 n nn n 3 1/ lim 2 n n 3 2 xn xn xn A f (x) 1. 4f ( x )x0(x0) 2. (1) xx0 , f (x) 2: (1) xx0 , (2) x xx0 , xx0 , . ,)(Axf 0 lim( ) xx f xA 0 ( )()f xA xx 00 00 , 2 xx xx ; 0)()() 1 (AxfAxf 0 0 lim)2(xxf xx y=x+1 ( xR ) 2 1 -1 0 1 x y

    11、 x 2 1 1 x y x y x1 y 2 x11 2 . 1, 1 ; 1,3 )( x xx xf 3 0 1 x y )(lim 1 xf x x x 3lim 1 )(lim 1 xf x |3)(|xf|33|x |1|3x0 ) 1(x 3 ) 13(lim) 1 ( 2 x x x x x 1 sinlim)2( 0 ) 13(lim) 1 ( 2 x x 5 x x x 1 sinlim)2( 0 0 |0 1 sin| x x 0 | 1 sin| x x | x )0(x 1.5 : Axf)0( 0 Axf xx )(lim 0 : . Axf xx )(lim 0

    12、)(lim)(lim 00 xfxf xxxx xx0 , ,)(AxfA f (x) , 0 xx Axf)0( 0 Axf xx )(lim 0 xx0 , ,)(AxfA f (x) , 0 xx A 5. 0,1 0,1 0, 1 )( xx x xx xf 0 x )(xf : . )(lim 0 xf x ) 1(lim 0 x x 1 )(lim 0 xf x )1 (lim 0 x x 1 ,)00()00(ff 1)(lim 0 xf x 1 xy x y O 1 xy 1 x y O 1 6. 0,1 0,0 0,2 )( xx x xx xf 0 x, )(xf : )(

    13、lim 0 xf x x x 2lim 0 0 )(lim 0 xf x ) 1(lim 0 x x 1 ,)00()00(ff )(lim 0 xf x xy2 1 xy (2) x , f (x) 1.6 x|x|, ,)(Axf A f (x) x , lim( ) x f xA ( )()f xA x lim ( ) x f xA lim( ) x f xA . Axf x )(lim Axfxf xx )(lim)(lim lim arctan x x 2 lim arctan x x 2 lim arctan. x x lim sin x x x sin11x lim sin x

    14、x 1. , lim( )f xAlim( )g xB lim( )( )f xg x lim( )lim( )fxg x AB )()(limxgxf)(lim)(limxgxf AB lim( )lim( )kf xkf xkA )( )( lim xg xf )(lim )(lim xg xf )0(B B A 0 lim( ) n f x ( n , n A0 ) lim( ) n f x 0 lim( ) n f x lim( ) n f x ; 1 )2( lim) 1 ( 2 2 x xx x 45 43 lim)2( 2 2 1 xx xx x 1 )2( lim) 1 ( 2

    15、 2 x xx x ) 1(lim )2(limlim 2 2 22 x xx x xx 14 02 0 45 43 lim)2( 2 2 1 xx xx x ) 1)(4( ) 1)(4( lim 1 xx xx x )4( )4( lim 1 x x x 3 5 ; 14 1 lim) 1 ( 2 x x x ; 12 13 lim)2( 2 2 xx x x 1 1 lim)3( 2 3 x x x 14 1 lim) 1 ( 2 x x x 2 2 1 4 11 lim x xx x 0 12 13 lim)2( 2 2 xx x x 2 2 11 2 1 3 lim xx x x 2

    16、 3 1 1 lim)3( 3 2 x x x 3 3 1 1 11 lim x xx x )( 0 1 1 lim 2 3 x x x 0 1 010 1 010 nn- n mm- x m , n m ).(lim 2 xxx x )(lim 2 xxx x xxx xxx x 2 22 lim xxx x x 2 lim 1 1 1 1 lim x x 2 1 0 )(lim 0 uxg xx )(),()(xguufyxgf 0 0 ),()(xUxgfy , 9 3 2 x x u u x3 lim 3 1 lim 3 x x = 6 1 6 6 6 1 g(x)=u 11 . :

    17、1 ,xu , 1lim 1 u x 1 1 1 1 2 u u x x 1 u ) 1(lim 1 u u 2 2 1 ) 1)(1( lim 1 x xx x ) 1(lim 1 x x 2 0 sin lim1 x x x 1 0 lim(1) x x xe (1) (2) 00 sin( ) lim( )0lim1. ( ) xxxx x x x 00 1 ( ) lim( )0lim(1( ). x xxxx xxe 1 (lim(1) x x e x x 71828. 2e 0 tan3 lim; x x x ; cos1 lim 2 0 x x x 0 tan3 lim x x

    18、x 0 sin 33 lim() 3cos3 x x xx 00 sin 31 3limlim 3cos3 xx x xx 3 2 0 cos1 lim x x x 2 2 0 2 sin2 lim x x x 2 2 0 ) 2 ( 2 sin lim 2 1 x x x 2 1 2 0 ) 2 2 sin lim( 2 1 x x x 1 0 lim(1); x x x lim(1) ; x x k x lim(1) x x k x lim(1) x k k x k x lim(1) x k k x k x k e 1 0 lim(1) x x x 1 1 0 lim(1) x x x 1

    19、 e 1 1 0 lim(1) x x x 1 lim () ; 1 x x x x 1 lim () 1 x x x x 2 lim (1) 1 x x x 1 22 lim (1)(1) 11 x x xx 1 2 2 22 lim (1) lim (1) 11 x xx xx 2 e (1) , f (x) : 1/x ; )x , . )x 1. 0. x. . 0 (x) 0 xx . Axf xx )(lim 0 Axf)(,)(x 1.2 () , 2 1cos1 lim 2 0 x x x )( 2 1cos1 2 x x x )( 2 1 1cos 22 xxxx x0 2

    20、2 1 1cosxxx 1: ; 2: ; (2) )(,),(),( 21 xfxfxf n )()()(lim 21 xfxfxf n )(lim)(lim)(lim 21 xfxfxf n 0 . 0 sin lim x x x 1 3. x x x 1 sinlim 0 3 x 1 sin, xx0, ; Mxfxf | )(|)( 0)()(xgxg |0)()(|xgxf| )(|xgM0 0)()(limxgxf 0 1 sinlim 0 x x x | )(|)(|xgxf (3) xxxxsin,0 2 0, x x x 2 0 lim , 0 2 0 lim x x x ,

    21、 x x x sin lim 0 1 x0 x20 x0 x0 x20 sinx0 x0 (3) ,0lim , );(o ,lim , , ; 1.8 0, . ,0lim k ; x x x 3 lim 3 0 , 0 xx3 3x , );3( 3 xox 9 3 lim 2 3 x x x 3 1 lim 3 x x 6 1 93 2 xxx (4) , 1lim , x x x tan lim 0 1 ) cos 1sin (lim 0 xx x x x, tanx x , .tanxx x x x )1ln( lim 0 x x x 1 0 )1ln(lim )1 (limln 1

    22、 0 x x x eln1 x, ln(1+x)x, .)1ln(xx , 2 2 1 x x0: 1 x a sin x cos1x1e x 1)1 ( x x , x x ,ln ax 4. : : : , lim : lim lim lim lim lim 5. x x x 5sin 2tan lim) 1 ( 0 x x x5 2 lim 0 5 2 . )0( sinsin lim x x x 1lim x x x 6() : : x, sinxx, sin ; xx x x 3 sin lim)2( 3 0 xx x x 3 lim 3 0 3 1 3 1 lim 2 0 x x

    23、(1)1.9xx0 (x) , f (x)xx0(x), )(lim )( 0 xf x xx f (x) (2) , )( 1 xf ; , ,0)(xf )( 1 xf , . , : () 0 1. , , 0 x , .)( 0 xxf (1) (2) (3) : ; ; )()(lim 0 0 xfxf xx )(lim 0 xf xx 0 )(xxf 2. 2 1xy () xysinln 1cosxy 3. (1) (2) ; (3) , ),()(lim 0 0 xfxf xx , f (x) : , , f(x) . f (x) ; xytan 2 x y O 2 x 1x

    24、: x y 1O (3) 0,1 0,0 0,1 )( xx x xx xfy x y O 1 1 , 1)00(f1)00(f 0 x ,)(lim 0 xf x , 21n xxxaxn n lim 2. 0 lim( ) xx f xA lim( ) x f xA Axf xx )(lim 0 Axf xx )(lim 0 Axf xx )(lim 0 )(lim)(lim 00 xfxf xxxx A 1. 2. ( )0 sin( ) lim1 ( ) x x x 1 ( ) ( )0 lim (1( ) x x xe ( ) ( ) 1 lim (1) ( ) x x e x 1.

    25、 0 lim( )0 xx f x Axf xx )(lim 0 Axf)(,)(x 2. 0 0 lim( , ) xx yy f x yA 00 (,)f xy 1.2 124(1)(2) 781011 第二章 ( ) 微分学 第一节第一节 导数的概念导数的概念 s O 1. v )()( 0 tftf 0 tt lim 0 tt v )()( 0 tftf 0 tt 2 2 1 t gs 0 t )( 0 tf)(tf t () 播放播放 () () () () () () () () () () 2. N T 0 x M M x M N M T ( ) M N tan )()( 0 x

    26、fxf 0 xx MT tanlim lim 0 xx k )()( 0 xfxf 0 xx x y )(xfy C O : . : N T 0 x M x x y )(xfy C O s O 0 t )( 0 tf)(tf t 1 . 0 lim xx 0 0) ()( xx xfxf x y x 0 lim , : ; 0 xx y ; )( 0 x f ; d d 0 xxx y 0 d )(d xxx xf , , . )( 0 x f x y x 0 lim (1) , . 0 x (2) (3) I , . : ; y ;)(x f ; d d x y . d )(d x xf :

    27、, x, x, h )( 0 x f 0 )( xx xf x xf d )(d 0 I . 00 ()( )()( ) limlim xh f xxf xf xhf x y xh )(tfs 0 t )(:xfyC M )( 0 t f )( 0 x f s O 0 t )( 0 tf)(tf t N T 0 x M x x y )(xfy C O : ()( 1 ); x yf xxf step x ( ) ;2: )yf s xxf x ep x x t 0 0 ()( ) ( )( 3: )lim x y x x f xxf x y xfx st p x e 0 ()( ) ( )li

    28、m h f xhf x fx h 0 lim xx 0 0) ()( xx xfxf : 1. (C ) . : y 2. : ax afxf )()( ax lim ax ax nn ax lim (lim ax 1n x 2 n xa 32 n xa) 1 n a x xfxxf )()( 0 lim x xy ( ) 1 )( xx )(x)( 2 1 x 2 1 2 1 x x2 1 x 1 )( 1 x 11 x 2 1 x ) 1 ( xx )( 4 3 x 4 7 4 3 x h xhx h sin)sin( lim 0 3. . : h xfhxf)()( 0 lim h 0

    29、lim h ) 2 cos(2 h x ) 2 cos(lim 0 h x h xcos xxcos)(sin xxsin)(cos (hx) 4. . : h xfhxf)()( 0 lim hh xhx h ln)ln( lim 0 hh 1 lim 0 x x 1 )(ln 0 lim h h 1 x 1x 0 lim h eln )(tan 0 x f : : )0)( 0 x f x y O )(xfy C T 0 x M x y O1 1 1 1 5. , ? . : 3 2 3 1 x , 3 11 3 1 32 x ,1x,1y (1,1) , (1,1) 6. x = 0.

    30、: h fhf)0()0( h h 0h,1 0h,1 h fhf h )0()0( lim 0 , h fhf h )0()0( lim 0 1lim 0 h 1 h fhf h )0()0( lim 0 ) 1(lim 0 h 1 2. )( 0 x f )( 0 xf 3. . () () )(bf , : a , b , . 1. : x , , 0 x x . : x . : xy x = 0 , . x y O , )( 0 xf () () )0( x )0( x )( 0 xf 0 x , xxf)( x = 0 2 . , , x y O xy ).(, 0, 0,sin )

    31、(xf xx xx xf ( )cosfxx ( )1,fx (0)f (0)f (0)1. f cos ,0 ( ). 1,0 xx fx x x0 , x=0 , 0 sin0 lim h h h 0 0 lim h h h 1 , a, b, , : x=3 , (3)f 3 3 lim 3 x axa x a (3)f 2 3 9 lim 3 x x x 6 6,9ab , , (30)9(30)3ffab 1. : 3. : 4. , ; 5. : 6. , . ; . ) (C ) ( x ) (sinx ) (cosx axf)( 0 2. axfxf )()( 00 ) (ln

    32、x ;0 ; 1 x ;cos x;sin x x 1 ; ; 3, 4, 5, 6 , 7 1. : )(x f , )( 0 x f ; : 0 )( xx xf)( 0 x f : ? )()( 00 xfxf 函数的微分导数的应用 第三节 2. 1. , 0 0 ( ) : (): (1) )( )( lim) 3 xg xf ax ( ) . )( )( lim )( )( lim xg xf xg xf axax ,)()()2xgxf 1. 0 0 () f (x), g (x) 1. 1 ax : , ax 3. )( )( lim xg xf , ,x 2. 3 0 0 1.

    33、 : 0 0 2 3 : ! 26 6 lim 1x x x 1 6 6 lim 1 x 33 2 x 123 2 xx lim 1 x 26 6 lim 1 x x x 2. : x lim 0 0 2 2 1 lim x x x 1 2 1 1 x 2 1 x (2) )( )( lim) 3 xg xf ax () )( )( lim xg xf ax 2. . )( )( lim xg xf ax () ,)()()2xgxf f (x), g (x) 0 lim x : = 0 x x x e 2 lim x x e 2 lim . e lim 2 x x x 0 lnsin lim

    34、,. lnsin x mx m nN nx 1. 0 cos lim cos x mnnx nmmx 0 cossin lim cossin x mmxnx nnxmx 0 sin lim sin x mnx nmx mx mxm sin cos nx nxn sin cos m n n m 5. : x lim xsin1 xcos1 () x xcos 1 x xsin 1 : 0 0 0 0 0 1 0 6. ).0(lnlim 0 nxx n x 0 : n xx x ln lim 0 0 lim x 0)(lim 0 n x n x x 1 1 n xn . )tan(seclim

    35、2 xx x : ) cos sin cos 1 (lim 2 x x xx x x xcos sin1 lim 2 2 lim x 7. 0 0 0 0 0 1 0 xcos xsin 0 0 8. xx x lnlim 0 x x x1 ln lim 0 2 01 1 lim x x x .lim 0 x x x 0 0 : x x x 0 lim xx x ln 0 elim 0 e1 0 0 0 0 0 1 0 )(lim 0 x x 0 2. (a, b) 1. a, b , )0)( x f () . a, b , (1) x y o )(xfy a b A B 0)( x f x

    36、 y o )(xfy 0)( x f a b B A (a, b) , f ( x ) 9. . : 12186)( 2 xxxf)2)(1(6xx ,0)( x f 2, 1xx x )(x f )(xf ) 1,( 2 00 1)2,1 (),2( 21 , 1,();,2 .2,1 1 2 xO y 12 2 22 ln(1) 11 xx xx xx x0 22 ( )1ln(1)1f xxxxx ( )fx ( )fx 0,( )(0)xf xf 0 x 22 1ln(1)1xxxx ( )0,fx 22 1ln(1)1xxxx 2 ln(1)xx 2 (ln(1)xxx 2 1 x

    37、x 2 ln(1)xxx 2 1 1xx 2 (1) 1 x x 2 1 x x 0, +)f (x) 0, 2 2 1 () 1 xx x . , (1) , ; (2) , . . , 0)( 0 x f)(xf 0 x )(xf 0 x 0 x0)( 0 xf(). . : 52 ,xx 641 ,xxx 3 x 2) 1) . 31292)( 23 xxxxf , , , 1 2 xO y 12 ox y a b )(xfy 1 x 2 x 3 x 4 x 5 x 6 x () , 0)( x f , 0)( x f ),( 0 0 xUx ,)( 0 xxfx0 , (1) “ (2

    38、) “ .)( 0 xxf 00 (,)xxx, 00 (,)xxx , , 0)( x f .)( 0 xxf 00 (,)xxx , 00 (,)xxx , , 0)( x f (3) x0, ,)(x f .)( 0 xxf x y o 0 x x y o 0 x );() 1 (x f (2)( )0fx ;,)() 3(x f .)4( x y o x y o x y o 0 x 0 x x y o . 23 ( )(1) (1)f xxx 223 ) 1() 1( 3) 1)(1(2)(xxxxxf ) 15() 1)(1( 2 xxx 0)( x f : 1, 5 1 1x :

    39、)(x f ( )f x ( )fx (1,) 1 ( ,1) 5 1 5 1 1 ( 1, ) 5 1(, 1) x 13456 ( ) 53125 f(1)0f () , ; . : (1) )( 0 x f 0 0) ()( lim 0 xx xfxf xx 0 )( lim 0 xx xf xx ,0)( 0 x f ,0,0 0 xx 00 xxx;0)( x f 00 xxx,0)( x f 0 x 0 x 0 x .)( 0 xxf (2) . 12. . : 1) ,) 1(6)( 22 xxxf) 15)(1(6)( 22 xxxf 2) ,0)( x f 1,0, 1 32

    40、1 xxx 3) ,06)0( f ; ,0) 1 () 1( ff. 1x y 1O (3) f (x (1) (2) maxM, )(af)(bf a, b. 21 2 33 ( )(1) 2, 2f xxx 24 2 33 12 2 33 2 (1) ( ) 3 (1) xx fx xx ( )0,fx 24 2 33 (1)0 xx 1 2 x 01xx 1 () 2 f 3 1 ( )4 2 f xx (0)f( 1)f ( 2)f 33 ( )243f xx 21 2 33 ( )(1) 2, 2f xxx 1,1, 33 43, 3 4 12 2 (P66): 7 1. )( )

    41、( lim xg xf , )( )( xg xf )( )( xg xf ? . , x xx x x 1 2 0 cossin3 lim 2 1 xx x )1ln( 0 )03( 2 1 2 3 : 3) 2cos1x : 2 0 3 cos1 lim x x x 3 0 lim x x 3. xsin x 1coslim 0 x xxxsin 2 2 2 1 03 lim x x x xcos1 2 2 1 x 6 1 6 1 xx xxx x 2 0 sin )sin(cos lim , 1 x t 2 0 11221 lim t tt t 4. : t t 2 lim 0 2 1

    42、)21 ( t 2 1 )1 ( t 2 )1 ()21 ( lim 2 3 2 3 2 1 0 tt t 4 1 , axxaxf3sin 3 1 sin)( 3 2 x , : )(xf 0)( 3 2 f 2a )(xf 2)(axf3)( 3 2 f 5. )(3cos)cos( 3 2 3 2 a ,3sin3sin2xx , . 01 2 1 a 1 ,0)(xf Nnxxnxf n ,)1 ()( ).(limnM n : )(xf ,0)( x f ) 1(1 )1 ( 1 xnxn n 6. n xn)1 ( 1 )1 ( n xnxn ,)(xfx )(nM 1 ) 1 (

    43、 n n n ) 1 1 ()( n fnM )(limnM n 1 e 1 ) 1 1 1 (lim n nn 1 1 n x 函数的微分(之一) 第三节 : , ? x , A , , 2 xA 0 x x xx 0 2 0 xA xx 0 2 )( x x 0 x 0 x x 0 x x, 0 x , 0 xx , : 0 x ( A x ) )(xfy xA .dxAy )( xoxA , (1) dy x xAyd (2) Axf (x)x0 y dy () 1 ox Ax 1 (5),().xydy y=x3x0 x (4)A0dyy 33 00 ()yxxx 223 00 33(

    44、)() .xxxxx )1()2( x0dy. .3d 2 0 xxy ,x.3 2 0 xxdyy (0).x (3)()ydyox x : : “ , )()( 00 xfxxfy ) )( (limlim 00 x xo A x y xx A )( xoxA , 0 x , xxfy)(d 0 : 0 x , xxfy)(d 0 “ )(lim 0 0 xf x y x )( 0 xf x y )0lim( 0 x xxxfy)( 0 )()( 0 xoxxf xxfy)(d 0 , : .dxx )( d d xf x y (d x x). dxxfdy) ( 1. 01. 0, 1x

    45、x 2 xy yd 01. 0 1 x x x2x 01. 0 1 x x 02. 0 . y=x3x=2 . xxyd)(d 3 1 . 0 2 2 1 . 0 23d x x x xxxy1 . 023 2 3 2 xx x=0.1x=2 2 d x y xx d3 2 )d(xx 2 2 d3 x xxxd12 2 . 1 ox y 0 M 0 x 0 xx y x dy M P N tany dyyxNP y dy dxxfdy) ( 1( )d C ln; x aa dx ; ln dx xa 1 ;xdx 2()d x 3() x d a4(log) a dx 0; cos;x d

    46、xsin;x dx ; x e dx; dx x 7()d8()d 5()d6()d x eln x sin xcosx 11(sec )dx 2 ; 1 dx x 2 ; 1 dx x 2 ; 1 dx x 2 . 1 dx x sectan;xx dx csccot;xx dx12(csc )dx 13(arcsin )dx 14(arccos )dx 15(arctan )dx 16(arccot )dx 2 sec;xdx 2 csc;xdx910(tan )dx(cot )dx ud u(x) , v(x) , (C ) , xxgufd)()()(u f 3. vudd vuuvd

    47、d : u , . duufdy) ( ., 1),1 (ln 2 dyxxy )1ln()1ln(2xdxdy )1ln(2x dx x x 1 )1ln(2 4. : )(cosd 31x exdy )cos(d 31 xe x dxex x ) 3()(cos 31 xxxe x d)sincos3( 31 xdxe x sin 31 )1 ( 1 1 xd x 5. : , 0)d(cos()sin( dyxxy xxyyxdcosdsin)sin(yx0)d(d yx xyd d )sin(cosyxxy xyxsin)sin( 6. : xxd) d() 1 ( tt dcos)

    48、d()2( 2 2 1 x t sin 1 : . C C . )(C : )()( 0 xoxxfy x, y xxf)( 0 xxfxfxxf)()()( 000 xxx 0 )()()( 000 xxxfxfxf : (1) (2) (3) )()( 00 xfxxf 1. . : ,sin)(xxf ooo 130cos30sin 2 1 2 3 180 7. )130sin( 00 )sin()( 00 xxxxf,cossin 00 xxx ,30 0 o x o x1 xxfxfxxf)()()( 000 x n 1 1 ) x( x x x x1 : ,1)( n xxf (4

    49、) ,x ,0 0 x , xffxf)0()0()( (3) ),)()()( 000 xxxfxfxf x , 1)0(f)0(f 0 1 1 |)1 ( 1 xn n x n 1 (4) . : 3 10001 3 ) 1000 1 1 (1000 10 ) 1000 1 3 1 1(00033.10 8. )|(| 1 11xx n x n 3 1000 1 110 1. 2. : uufufd)()(d ( u ) 3. : 1,2 1. () :, 2. 3. xx ed)d(arctane x2 e1 1 xd x x 2 e1 e x x sind tand . 4 x 3 sec xxd2sin) (d. 5 Cx2cos 2 1

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:医学数学完整教学课件.ppt
    链接地址:https://www.163wenku.com/p-1086645.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库