书签 分享 收藏 举报 版权申诉 / 9
上传文档赚钱

类型2022届高考(统考版)数学理科一轮复习教学案:第13章 第2节 不等式的证明 (含解析).doc

  • 上传人(卖家):小豆芽
  • 文档编号:1078335
  • 上传时间:2021-02-07
  • 格式:DOC
  • 页数:9
  • 大小:275KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2022届高考(统考版)数学理科一轮复习教学案:第13章 第2节 不等式的证明 (含解析).doc》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022届高考统考版数学理科一轮复习教学案:第13章 第2节 不等式的证明 含解析 2022 高考 统考 数学 理科 一轮 复习 教学 13 不等式 证明 解析 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、不等式的证明不等式的证明 考试要求 通过一些简单问题了解证明不等式的基本方法:比较法、综合 法、分析法 1基本不等式的推广 如果 a1,a2,an为 n 个正数,则a 1a2an n na1a2an,当且仅当 a1a2an时,等号成立 2柯西不等式 (1)柯西不等式的代数形式:设 a,b,c,d 都是实数,则(a2b2)(c2d2)(ac bd)2(当且仅当 adbc 时,等号成立) (2)柯西不等式的向量形式:设 , 是两个向量,则|,当且仅当 或 是零向量,或存在实数 k,使 k(, 为非零向量)时,等号成立 (3)柯西不等式的三角形不等式:设 x1,y1,x2,y2,x3,y3R,则 x

    2、1x22y1y22 x2x32y2y32 x1x32y1y32. (4)柯西不等式的一般形式:设 a1,a2,a3,an,b1,b2,b3,bn是实 数, 则(a 2 1a 2 2a 2 n)(b 2 1b 2 2b 2 n)(a1b1a2b2anbn)2, 当且仅当 bi0(i 1,2,n)或存在一个数 k,使得 aikbi(i1,2,n)时,等号成立 3不等式的证明方法 (1)比较法 作差法(a,bR):ab0ab;ab0a0,b0):a b1ab; a b1a0, M2a3b3, N2ab2a2b, 则 M, N 的大小关系为 MN 2a3b3(2ab2a2b)2a(a2b2)b(a2b

    3、2)(a2b2)(2ab)(a b)(ab)(2ab) 因为 ab0,所以 ab0,ab0,2ab0, 从而(ab)(ab)(2ab)0,故 2a3b32ab2a2b. 3已知 a,b,c 是正实数,且 abc1,则1 a 1 b 1 c的最小值为 9 abc1, 1 a 1 b 1 c 3 b a a b c a a c c b b c 32 b a a b2 c a a c2 c b b c 369, 当且仅当 abc 时等号成立 4 设 a, b, m, nR, 且 a2b25, manb5, 则 m2n2的最小值为 5 根据柯西不等式(manb)2(a2b2)(m2n2),得 255(

    4、m2n2), 即 m2n25, 所以 m2n2的最小值为 5. 考点一 用综合法与分析法证明不等式 用综合法证明不等式是“由因导果”,用分析法证明不等式是 “执果索因”,它们是两种思路截然相反的证明方法综合法往往是分析法的逆 过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合 法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利 用这一辩证关系,可以开阔解题思路,开阔视野 1(2020 全国卷)设 a,b,cR,abc0,abc1. (1)证明:abbcca0 且 abbcca1,求证:abc 3. 证明 因为 a,b,c0,所以要证 abc 3, 只需证

    5、明(abc)23. 即证 a2b2c22(abbcca)3, 而 abbcca1, 故需证明 a2b2c22(abbcca)3(abbcca), 即证 a2b2c2abbcca. 而 abbccaa 2b2 2 b 2c2 2 c 2a2 2 a2b2c2(当且仅当 abc 时等号成立)成立, 所以原不等式成立 3(2019 全国卷)已知 a,b,c 为正数,且满足 abc1.证明:(1)1 a 1 b 1 ca 2 b2c2; (2)(ab)3(bc)3(ca)324. 证明 (1)因为 a2b22ab,b2c22bc,c2a22ac,且 abc1,故有 a2b2c2abbccaabbcca

    6、 abc 1 a 1 b 1 c. 所以1 a 1 b 1 ca 2b2c2. (2)因为 a,b,c 为正数且 abc1,故有 (ab)3(bc)3(ca)333ab3bc3ac3 3(ab)(bc)(ac)3(2 ab)(2 bc)(2 ac) 24. 所以(ab)3(bc)3(ca)324. 点评: (1)利用综合法证明不等式时, 常用的不等式有: a20; |a|0; a2 b22ab, 它的变形形式又有(ab)24ab, a2b2 2 ab 2 2 等; ab 2 ab(a0, b0),它的变形形式又有 a1 a2(a0), b a a b2(ab0), b a a b2(ab0)等

    7、 (2)用分析法证明不等式时,不要把“逆求”错误地作为“逆推”,分析的过 程是寻求结论成立的充分条件,而不一定是充要条件,同时要正确使用“要 证”“只需证”这样的“关键词” 考点二 放缩法证明不等式 (1)在不等式的证明中,“放”和“缩”是常用的证明技巧,常 见的放缩方法有: 变换分式的分子和分母,如 1 k2 1 kk1, 1 k 2 k k1,上面不等式中 kN *,k1; 利用函数的单调性; 利用结论,如“若 0a0,则a b0,| x1 a 3,|y2| a 3,求证:|2xy4|a. (2)求证: 1 12 1 22 1 32 1 n20,|x1|a 3,可得|2x2| 2a 3 ,

    8、 又|y2|a 3, |2xy4|(2x2)(y2)| |2x2|y2|2a 3 a 3a. 即|2xy4|a. (2) 1 n2 1 nn1 1 n1 1 n, 1 12 1 22 1 32 1 n21 1 22( 1 2 1 3 1 n1 1 n) 5 4( 1 2 1 n) 7 4. 点评:(1)本例(1)采用了绝对值不等式的性质证明不等式,通过变形、配凑达 到证明的目的;(2)本例(2)采用了从第三项开始拆项放缩的技巧,放缩拆项时,不 一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太 窄,真正做到恰到好处 跟进训练 1设 n 是正整数,求证:1 2 1 n1 1

    9、n2 1 2n1. 证明 由 2nnkn(k1,2,n), 得 1 2n 1 nk 1 n. 当 k1 时, 1 2n 1 n1 1 n; 当 k2 时, 1 2n 1 n2 1 n; 当 kn 时, 1 2n 1 nn 1 n, 1 2 n 2n 1 n1 1 n2 1 2n n n1. 原不等式成立 2若 a,bR,求证: |ab| 1|ab| |a| 1|a| |b| 1|b|. 证明 当|ab|0 时,不等式显然成立 当|ab|0 时, 由 0|ab|a|b| 1 |ab| 1 |a|b|, 所以 |ab| 1|ab| 1 1 |ab|1 1 1 1 |a|b| |a|b| 1|a|b

    10、| |a| 1|a|b| |b| 1|a|b| |a| 1|a| |b| 1|b|. 综上,原不等式成立 考点三 柯西不等式的应用 柯西不等式的解题策略 (1)利用柯西不等式证明不等式,先使用拆项重组、添项等方法构造符合柯西 不等式的形式及条件,再使用柯西不等式解决有关问题 (2)利用柯西不等式求最值,实质上就是利用柯西不等式进行放缩,放缩不当 则等号可能不成立,因此一定不能忘记检验等号成立的条件. 典例 2 (2019 全国卷)设 x,y,zR,且 xyz1. (1)求(x1)2(y1)2(z1)2的最小值; (2)若(x2)2(y1)2(za)21 3成立,证明:a3 或 a1. 解 (1

    11、)由于 (x1)(y1)(z1)2 (x1)2(y1)2(z1)22(x1)(y1)(y1)(z1)(z1)(x1) 3(x1)2(y1)2(z1)2, 故由已知得(x1)2(y1)2(z1)24 3,当且仅当 x 5 3,y 1 3,z 1 3时 等号成立 所以(x1)2(y1)2(z1)2的最小值为4 3. (2)由于(x2)(y1)(za)2 (x2)2(y1)2(za)22(x2)(y1)(y1)(za)(za)(x2) 3(x2)2(y1)2(za)2, 故由已知得(x2)2(y1)2(za)22a 2 3 ,当且仅当 x4a 3 ,y1a 3 , z2a2 3 时等号成立 因此(x

    12、2)2(y1)2(za)2的最小值为2a 2 3 . 由题设知2a 2 3 1 3,解得 a3 或 a1. 点评:利用柯西不等式证明不等式或求解某些含有约束条件的多变量的最值 问题,解决的关键是构造两组数,并向柯西不等式的形式进行转化 跟进训练 1已知 a,b,cR,且满足 a2b3c6,求 a22b23c2的最小值 解 由柯西不等式,得(123)(a22b23c2)(1 a 2 2b 3 3c)2. 得 6(a22b23c2)(a2b3c)236. 所以 a22b23c26. 当且仅当a 1 2b 2 3c 3 ,即 abc1 时,上式等号成立所以 a22b23c2 的最小值为 6. 2设 x,y,zR,且 x2 16 y2 5 z2 41,求 xyz 的取值范围 解 由柯西不等式,得 42( 5)222 x 4 2 y 5 2 z 2 2 4x 4 5 y 52 z 2 2 , 即 251(xyz)2. 所以 5|xyz|,所以5xyz5. 即 xyz 的取值范围是5,5 3已知 a,b,c,d 为实数,且 a2b24,c2d216,证明:acbd8. 证明 由柯西不等式,得(acbd)2(a2b2)(c2d2)因为 a2b24,c2 d216, 所以(acbd)264, 因此 acbd8.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022届高考(统考版)数学理科一轮复习教学案:第13章 第2节 不等式的证明 (含解析).doc
    链接地址:https://www.163wenku.com/p-1078335.html
    小豆芽
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库