书签 分享 收藏 举报 版权申诉 / 32
上传文档赚钱

类型2022年高中数学人教B版选择性必修第三册课件:5.3.2 等比数列的前n项和 .ppt

  • 上传人(卖家):小豆芽
  • 文档编号:1077866
  • 上传时间:2021-02-07
  • 格式:PPT
  • 页数:32
  • 大小:811.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2022年高中数学人教B版选择性必修第三册课件:5.3.2 等比数列的前n项和 .ppt》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年高中数学人教B版选择性必修第三册课件:5.3.2等比数列的前n项和 2022 年高 学人 选择性 必修 第三 课件 5.3 等比数列 下载 _必修第三册_人教B版(2019)_数学_高中
    资源描述:

    1、5.3.2 等比数列的前n项和 最新课程标准 1.掌握等比数列的前 n 项和公式及其应用(重点) 2能用分组转化方法求数列的和(重点、易错点) 3会用错位相减法求数列的和(难点) 教材要点教材要点 知识点 等比数列的前 n 项和公式 na1 a11qn 1q na1 a1anq 1q 状元随笔 等比数列求和应注意什么? 提示 公比 q 是否等于 1. 基础自测基础自测 1在公比为整数的等比数列an中,a1a23,a34,则 an的前 5 项和为( ) A10 B.21 2 C11 D12 解析:设公比为 q(qZ),则 a1a2a1a1q3,a3a1q2 4,求解可得 q2,a11,则an的前

    2、 5 项和为12 5 12 11. 答案:C 2已知等比数列an的公比 q2,前 n 项和为 Sn,则S3 a2 ( ) A3 B4 C.7 2 D. 13 2 解析:易知等比数列an的首项为 a1,则S3 a2 a1123 12 a12 7 2. 答案:C 3 在等比数列an中, a12, S326, 则公比 q_. 解析: S3a 11q 3 1q 21q 3 1q 26, q2q120, q 3 或4. 答案:3 或4 4 等比数列an中, 公比 q2, S544, 则 a1_. 解析:由 S5a 112 5 12 44, 得 a14. 答案:4 题型一 等比数列前 n 项和公式基本量的

    3、运算 例 1 在等比数列an中 (1)若 q2,S41,求 S8; (2)若 a1a310,a4a65 4,求 a4 和 S5. 解析:(1)法一:设首项为 a1, q2,S41, a 112 4 12 1,即 a1 1 15, S8a 11q 8 1q 1 1512 8 12 17. 法二:S4a 11q 4 1q 1,且 q2, S8a 11q 8 1q a 11q 4 1q (1q4)S4 (1q4)1(124) 17. (2)设公比为 q,由通项公式及已知条件得 a1a1q210, a1q3a1q55 4. 即 a11q210, a1q31q25 4, a10,1q20, 得,q31

    4、8,即 q 1 2, a18. a4a1q38 1 2 31, S5a 11q 5 1q 8 1 1 2 5 11 2 31 2 . 方法归纳 1解答关于等比数列的基本运算问题,通常是利用 a1,an, q,n,Sn这五个基本量的关系列方程组求解,而在条件与结论间 联系不很明显时,均可用 a1与 q 列方程组求解 2运用等比数列的前 n 项和公式要注意公比 q1 和 q1 两种情形,在解有关的方程组时,通常用两式相除约分的方法进 行消元 跟踪训练 1 在等比数列an中,其前 n 项和为 Sn. (1)S230,S3155,求 Sn; (2)已知 S41,S817,求 an. 解析:(1)由题意

    5、知 a11q30, a11qq2155, 解得 a15, q5 或 a1180, q5 6, 从而 Sn1 45 n15 4或 Sn 1 080 1 5 6 n 11 . (2)设an的公比为 q,由 S41,S817 知 q1, 所以 a11q4 1q 1, a11q8 1q 17, 得 1 1q4 1 17, 解得 q 2, 所以 a1 1 15, q2 或 a11 5, q2 . 所以 an2 n1 15 或 an1 n2n1 5 . 题型二 等差、等比数列前 n 项和的综合应用(分组求和法) 例 2 已知an是等差数列,bn是等比数列,且 b23,b39, a1b1,a14b4. (1

    6、)求an的通项公式; (2)设 cn an bn,求数列cn的前 n 项和 解析:(1)等比数列bn的公式 qb3 b2 9 33, 所以 b1b2 q 1,b4b3q27. 设等差数列an的公差为 d. 因为 a1b11,a14b427, 所以 113d27,即 d2. 所以 an2n1(n1,2,3,) (2)由(1)知,an2n1,bn3n 1. 因此 cnanbn2n13n 1. 从而数列cn的前 n 项和 Sn13(2n1)133n 1 n12n1 2 13 n 13 n23 n1 2 . 状元随笔 (1)求出等比数列bn的公比,再求出 a1,a14的 值,根据等差数列的通项公式求解

    7、; (2)根据等差数列和等比数列的前 n 项和公式求数列cn的 前 n 项和 方法归纳 分组转化法求和的常见类型 1若 an bn cn,且bn,cn为等差或等比数列,则可采 用分组求和法求an的前 n 项和 2通项公式为 an bn,n为奇数 cn,n为偶数 的数列,其中数列bn, cn是等比数列或等差数列,可采用分组求和法求和 跟综训练 2 已知数列an满足 an1an2,数列bn是各 项均为正数的等比数列, 且 a1b12,b3和 b5的等差中项是 20,nN*. (1)求数列an,bn的通项公式; (2)若 cna2n1b2n1,求数列cn的前 n 项和 Sn. 解析:(1)因为 an

    8、1an2(nN*),即 an1an2(nN*), 又因为 a12,所以 an2n(nN*) 由题意可知等比数列bn公比 q0. 又由 b3和 b5的等差中项是 20,可知 b3b540 所以 2q22q440,即 q2q420.解得 q2. 又 b12,故 bn2n(nN*) (2)由(1)知,a2n12(2n1)4n2,b2n122n 12 4n1 cna2n1b2n12 4n 14n2. Sn(22)(246)(24210)(24n 14n 2) (22424224n 1)2610(4n 2) 214 n 14 24n2n 2 2 34 n2n22 3 所以 Sn2 34 n2n22 3(

    9、nN *) 题型三 错位相减法求和 状元随笔 1由项数相等的等差数列n与等比数列2n相应项的积构 成新的数列n 2n是等比数列吗?是等差数列吗?该数列的前 n 项和 Sn的表达式是什么? 提示 由等差数列及等比数列的定义可知数列n 2n既不 是等差数列,也不是等比数列该数列的前 n 项和 Sn的表达式 为 Sn1 212 223 23n 2n. 2在等式 Sn1 212 223 23n 2n两边同乘以数列 2n的公比后,该等式的变形形式是什么?认真观察两式的结构 特征,你能将求 Sn的问题转化为等比数列的前 n 项和问题吗? 提示 在等式 Sn1 212 223 23n 2n, 两边同乘以2n

    10、的公比可变形为 2Sn1 222 233 24(n1) 2nn 2n 1, 得:Sn1 212223242nn 2n 1 (2122232n)n 2n 1. 此时可把求 Sn的问题转化为求等比数列2n的前 n 项和问 题我们把这种求由一个等差数列an和一个等比数列bn相应 项的积构成的数列anbn前 n 项和的方法叫错位相减法 例 3 设数列an的前 n 项和为 Snn2n,数列bn的通项 公式为 bnxn 1(x0) (1)求数列an的通项公式; (2)设 cnanbn,数列cn的前 n 项和为 Tn,求 Tn. 解析:(1)an S1,n1, SnSn1,n2, 即 an 2,n1, 2n

    11、,n2. 当 n1 时,an2n 也成立,an2n,即数列an的通项 公式为 an2n. (2)由 an2n,bnxn 1 且 cnanbn可得 cn2nxn 1, Tn24x6x28x32nxn 1, 则 xTn2x4x26x38x42nxn. ,得(1x)Tn22x2x22xn 12nxn. 当 x1 时,(1x)Tn21x n 1x 2nxn, Tn22n1x n2nxn1 1x2 . 当 x1 时,Tn24682nn2n. 状元随笔 由 an S1,n1, SnSn1,n2 完成第(1)问;由题设 知an为等差数列,bn为等比数列,因此可用错位相减法求 Tn. 方法归纳 错位相减法的适

    12、用范围及注意事项 1适用范围:它主要适用于an是等差数列,bn是等比数 列,求数列anbn的前 n 项和 2注意事项:(1)利用“错位相减法”时,在写出 Sn与 qSn 的表达式时,应注意使两式错对齐,以便于作差,正确写出(1 q)Sn的表达式 (2)利用此法时要注意讨论公比 q 是否等于 1 的情况 跟踪训练 3 1 2 1 2 3 8 n 2n_. 解析:令 Sn1 2 2 4 3 8 n 2n, 则1 2Sn 1 4 2 8 3 16 n1 2n n 2n 1, 由得,1 2Sn 1 2 1 4 1 8 1 2n n 2n 1 1 2 1 1 2 n 11 2 n 2n 1, 得 Sn2 2 2n n 2n 2n 1n2 2n . 答案:2 n1n2 2n 教材反思 1本节课的重点是等比数列前 n 项和公式的基本运算 2在等比数列的通项公式和前 n 项和公式中,共涉及五个 量:a1,an,n,q,Sn,其中首项 a1和公比 q 为基本量,且“知 三求二” 3前 n 项和公式的应用中,注意前 n 项和公式要分类讨论, 即当 q1 和 q1 时是不同的公式形式,不可忽略 q1 的情况.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年高中数学人教B版选择性必修第三册课件:5.3.2 等比数列的前n项和 .ppt
    链接地址:https://www.163wenku.com/p-1077866.html
    小豆芽
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库