书签 分享 收藏 举报 版权申诉 / 12
上传文档赚钱

类型北京市东城区2019-2020学年度第二学期高三 一模数学试卷(官方版).docx

  • 上传人(卖家):四川天地人教育
  • 文档编号:1037650
  • 上传时间:2021-01-21
  • 格式:DOCX
  • 页数:12
  • 大小:691.95KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《北京市东城区2019-2020学年度第二学期高三 一模数学试卷(官方版).docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    北京市东城区2019-2020学年度第二学期高三 一模数学试卷(官方版 北京市 东城区 学年度 第二 学期 高三 数学试卷 官方 下载 _模拟试题_高考专区_数学_高中
    资源描述:

    1、1 北京市东城区 2019-2020 学年度第二学期高三综合练习(一) 数 学 2020.5 本试卷共 4 页,共 150 分。考试时长 120 分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后, 将答题卡一并交回。 第一部分(选择题 共 40 分) 一、选择题共 10 小题,每小题 4 分,共 40 分。在每小题列出的四个选项中,选出符合题目要求的一项。 (1) 已知集合 10Ax x,1 0 1 2B , ,那么AB I (A)1 0 , (B) 0 1, (C) 1 0 1 2 , , (D) 2 (2) 函数 2 2 ( ) 1 x f x x 的定义域为 (A) - (

    2、 , 1 2 (B) ,)2 + (C) -(,) ,)11 +U (D) -(,) ,)12 +U (3) 已知 2 1 i() 1i a +a R,则a (A) 1 (B) 0 (C) 1 (D)2 (4) 若双曲线 2 2 2 :1(0) y C xb b 的一条渐近线与直线21yx平行,则b的值为 (A) 1 (B) 2 (C) 3 (D) 2 (5) 如图所示,某三棱锥的正(主)视图、俯视图、侧(左)视 图均为直角三角形,则该三棱锥的体积为 (A)4 (B)6 (C)8 (D)12 (6) 已知1x ,那么在下列不等式中,不 成立的是 (A) 2 10 x (B) 1 2x x (C

    3、) sin0 xx (D) cos0 xx 正(主) 侧(左) 俯 视 2 (7)在平面直角坐标系中, 动点M在单位圆上按逆时针方向作匀速圆周运动, 每12分钟转动一周. 若点M的初始位 置坐标为( ,) 13 22 ,则运动到3分钟时,动点M所处位置的坐标是 (A)(, ) 3 1 22 (B) (,) 13 22 (C) (, ) 3 1 22 (D) (,) 31 22 (8) 已知三角形ABC,那么“+ +AB ACABAC uu u r uuu ruu u ruuu r ”是“三角形ABC为锐角三角形”的 (A)充分而不必要条件 (B) 必要而不充分条件 (C)充分必要条件 (D)既

    4、不充分也不必要条件 (9) 设O为坐标原点,点( , )1 0A,动点P在抛物线yx 2 2上,且位于第一象限,M是线段PA的中点,则直线OM 的斜率的范围为 (A) (0,1 (B) 2 (0) 2 , (C) 2 (0 2 , (D) 2 ) 2 , (10) 假设存在两个物种,前者有充足的食物和生存空间,而后者仅以前者为食物,则我们称前者为被捕食者,后者 为捕食者. 现在我们来研究捕食者与被捕食者之间理想状态下的数学模型. 假设捕食者的数量以( )x t表示,被捕食 者的数量以( )y t表示.下图描述的是这两个物种随时间变化的数量关系,其中箭头方向为时间增加的方向.下列说法 正确的是:

    5、 (A) 若在 12 tt,时刻满足: 12 ( )= ( )y ty t,则 12 ( )= ( )x tx t; (B) 如果( )y t数量是先上升后下降的,那么( )x t的数量一定也是先上 升后下降; (C) 被捕食者数量与捕食者数量不会同时到达最大值或最小值; (D) 被捕食者数量与捕食者数量总和达到最大值时,被捕食者的数量 也会达到最大值. 第二部分(非选择题 共 110 分) 二、填空题共 5 小题,每小题 5 分,共 25 分。 (11) 已知向量( , ),( ,),( , )1122 3mabc,若ab 与c共线,则实数m= . (12) 在 6 2 ()x x 的展开式

    6、中常数项为 . (用数字作答) (13) 圆心在x轴上,且与直线 1: lyx和 2: 2lyx都相切的圆的方程为_. (14) ABCV是等边三角形,点D在边AC的延长线上,且3ADCD,2 7BD,则CD ,sinABD . 3 (15) 设函数 (1),0, ( ) 22,0. x aa x a xx f x x 给出下列四个结论: 对0 a,t R,使得( )f xt无解; 对0 t,a R,使得( )f xt有两解; 当0a 时,0t ,使得( )f xt有解; 当2a 时,t R,使得( )f xt有三解. 其中,所有正确结论的序号是 . 注:本题给出的结论中,有多个符合题目要求。

    7、全部选对得注:本题给出的结论中,有多个符合题目要求。全部选对得5 5 分,不选或有错选得分,不选或有错选得0 0分,其他得分,其他得3 3 分。分。 三、解答题共 6 小题,共 85 分。解答应写出文字说明,演算步骤或证明过程。 (16)(本小题 14 分) 如图,在四棱锥PABCD-中,PD 面ABCD,底面ABCD为平行四边形,ABAC,1ABAC,1PD ()求证:/AD平面PBC; ()求二面角DPCB的余弦值的大小. (17)(本小题 14 分) 已知函数 ( )sin()cos ()(f xaxxa 2 220) 66 ,且满足 . ()求函数( )f x的解析式及最小正周期; (

    8、)若关于x的方程( )f x 1在区间 , 0 m 上有两个不同解,求实数m的取值范围. 从( )f x的最大值为1,( )f x的图象与直线3y 的两个相邻交点的距离等于,( )f x的图象过点 (,0) 6 这三个条件中选择一个,补充在上面问题中并作答. 注:如果选择多个条件分别解答,按第一个解答计分。注:如果选择多个条件分别解答,按第一个解答计分。 4 (18)(本小题 14 分) 中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,预计 2020 年北斗全球系统建设将全面完成.下图是在 室外开放的环境下,北斗二代和北斗三代定位模块,分别定位的50个点位的横、纵坐标误差的值,其中“g”

    9、 表 示北斗二代定位模块的误差的值, “+”表示北斗三代定位模块的误差的值.(单位:米) ()从北斗二代定位的50个点位中随机抽取一个,求此 点横坐标误差的值大于10米的概率; () 从图中A,B,C,D四个点位中随机选出两个, 记X为 其中纵坐标误差的值小于4的点位的个数,求X的分布 列和数学期望; ()试比较北斗二代和北斗三代定位模块纵坐标误差的 方差的大小.(结论不要求证明) (19) (本小题 14 分) 已知椭圆 22 22 :1(0) xy Eab ab ,它的上,下顶点分别为A,B,左,右焦点分别为 1 F, 2 F,若四边形 12 AFBF为 正方形,且面积为2. ()求椭圆E

    10、的标准方程; ()设存在斜率不为零且平行的两条直线 12 ,ll,与椭圆E分别交于点,C D M N,且四边形CDMN是菱形,求 出该菱形周长的最大值. (20) (本小题 15 分) 已知函数( )(ln)f xxxax(aR). ()若1a ,求曲线( )yf x在点(1,(1)f处的切线方程; ()若( )f x有两个极值点,求实数a的取值范围; ()若1a ,求( )f x在区间0, 2a上的最小值. x y O 1055101520 4 2 2 4 6 8 10 12 B C D A + + + + + + + + + + + + + + + + + + + + + + + + +

    11、+ + + + + + + + + + + + + + + + + + + + + + + 5 (21)(本小题 14 分) 数列 123n AxxxxLL: , , , ,对于给定的 + (1N )t tt,记满足不等式: + ()(N) nt xxt ntnnt, 的 * t构成的集合为( )T t. ()若数列 2 = n Axn:,写出集合(2)T; ()如果( )T t + (N1)tt,均为相同的单元素集合,求证:数列 12n xxx, , ,LL为等差数列; (III) 如果( )T t + (N1)tt,为单元素集合, 那么数列 12n xxx, , ,LL还是等差数列吗?如果

    12、是等差数列,请给 出证明;如果不是等差数列,请给出反例. (考生务必将答案答在答题卡上,在试卷上作答无效) 6 北京市东城区 2019-2020 学年度第二学期高三综合练习(一) 数学参考答案及评分标准数学参考答案及评分标准 2020.2020.5 5 一、选择题(共一、选择题(共 1010 小题,每小题小题,每小题 4 4 分,共分,共 4040 分)分) (1)D (2)B (3)A (4)D (5)A (6)D (7)C (8)B (9)C (10)C 二、填空题(共二、填空题(共 5 5 小题,每小题小题,每小题 5 5 分,共分,共 2525 分)分) (11)3 (12)160 (

    13、13) 22 1 (1) 2 xy (14) 3 21 2 14 , (15) 三、解答题共 6 小题,共 85 分。解答应写出文字说明,演算步骤或证明过程。 (16)(本小题 14 分) 解: ()如图,因为 四边形ABCD为平行四边形, 所以 /ADBC, 因为 BC 平面PBC,AD 平面PBC, 所以 /AD平面PBC 6 分 ()取C为坐标原点,过点C的PD平行线为z轴, 依题意建立如图所示的空间直角坐标系-Cxyz 由题意得,(0, 1,1)P,(1,0,0)A,(0,0,0)C,(1,1,0)B 所以(0,1, 1)PC ,(1,1,0)CB ,( 1,0,0) AC 设平面PB

    14、C的法向量为( , , )n x y z, 则 0, 0, n n PC CB 即 0, 0. yz xy 令1 y,则1x,1 z 所以 (1, 1, 1)n 因为ABCD为平行四边形,且ABAC, 所以 CDAC 因为PD 面ABCD, 所以 PDAC 又因为ICDPDD, 7 所以AC面PDC 所以 平面PDC的法向量为=( 1,0,0) uuu r AC, 所以 3 cos, 3 | n n n AC AC AC uuu r uuu r uuu r, 由题意可知二面角DPCB的平面角为钝角, 所以二面角DPCB余弦值的大小为 3 3 . 14 分 (17)(本小题 14 分) 解: (

    15、)因为 ( )sin()cos () 66 f xaxx221 sin()cos() 3 sin()cos()+ 662 ()sin() 6 axx axx ax 221 6 221 121 所以 函数( )f x的最小正周期T . 因为 a 0,所以函数( )f x的最大值和最小值分别为, aa 2. 若选,则a 1 ,函数 ( )2sin(2) 1 6 f xx; 若选,则3为函数( )f x的最小值,从而a 1 ,函数 ( )2sin(2) 1 6 f xx; 选, (1)sin(2) 1 1 66 a ,从而a 1 ,函数 ( )2sin(2) 1 6 f xx . 8 分 ()由()

    16、知函数( )f x的最大值为1; 因为 关于x的方程( )f x 1在区间 , m0上有两个不同解, 当 , xm 0时, , 666 xm 22. 所以 59 262 m2,解得 47 33 m. 所以,实数m的取值范围是 4 7 ,) 33 . 14 分 (18)(本小题 14 分) 解()由图知,在北斗二代定位的50个点中,横坐标误差的绝对值大于10米有 3 个点, 8 所以 从中随机选出一点,此点横坐标误差的绝对值大于10米的概率为 3 0.06 50 . 4 分 ()由图知, A BCD, , ,四个点位中纵坐标误差值小于4的有两个点: CD,. 所以 X所有可能取值为0,1,2.

    17、0 2 2 4 1 (0) 6 C P X C , 11 22 2 4 2 (1) 3 C C P X C , 2 2 2 4 1 (2) 6 C P X C . 所以 X的分布列为 X 0 1 2 P 1 6 2 3 1 6 所以 X的期望 121 0121 636 EX . 12 分 ()北斗二代定位模块纵坐标误差的方差大于北斗三代. 14 分 (19) (本小题 14 分) 解: ()因为 22 22 :1(0) xy Eab ab , 所以 222 abc . 因为 四边形 12 AFBF为正方形,且面积为2, 所以 22bc, 1 (2 ) (2 )2 2 bc. 所以 1bc, 2

    18、22 2abc. 所以 椭圆 2 2 :1 2 x Ey. 4 分 ()设平行直线 1: lykxm, 2: lykxm, 不妨设直线ykxm与 2 2 1 2 x y交于 1122 ,C x yD x y, 由 2 2 1 2 x y ykxm ,得 2 2 22xkxm, 9 化简得: 222 214220kxkmxm, 其中 22222 (4)4 (21) (22)16880kmkmkm ,即 22 21mk. 所以 12 2 4 21 km xx k , 2 12 2 22 21 m x x k , 由椭圆的对称性和菱形的中心对称性,可知OCOD, 所以 1212 0 x xy y,

    19、11 ykxm, 22 ykxm, 22 12121212 222222 2 222222222 2 22 2 1 22 1421 21 222242 21 322 21 x xy ykx xkm xxm mkk mmk k k mmkk mk mm k mk k , 所以 22 322mk. 22 121 2 |(1)()4CDkxxx x= 222 2 222 168(1) (1) (21)21 k mm k kk 22 22 (1)(328) 3(21) kk k 2 22 88 33(21) k k =+ 2 2 2 2 88 1 3 3(44) 88 31 3(42 4) 3 k k

    20、 k k =+ + = 所以 当且仅当 2 2 k 时,|CD的最大值为3. 此时 四边形CDMN周长最大值为4 3. 14 分 (20)(本小题 15 分) 解:解: ()当1a 时,( )ln21fxxx, 所以(1)1 f . 10 又因为(1)1f , 所以 切线方程为11yx ,即0 xy. 4 分 ()( )ln21fxxax, 设 ( )ln21g xxax, 当0a时,易证( )g x在0 +,单调递增,不合题意. 当0a时 1 2gxa x , 令 0g x,得 1 2 x a , 当 1 0, 2 x a 时, 0g x, g x在 1 0, 2a 上单调递增, 当 1 ,

    21、+ 2 x a 时, 0g x, g x在 1 , 2a 上单调递减, 所以 g x在 1 2 x a 处取得极大值 11 ln 22 g aa . 依题意,函数 ln21g xxax有两个零点, 则 11 ln0, 22 g aa 即 1 1 2a , 解得 1 0 2 a. 又由于 11 1 2ea , 11 =20ga ee , 1 2 2 1 2 a e a , 由 2 1(0) x exx得 11 22 2 22 111 ()22122(2)111 100 222 aa g ea eaa aaa 实数a的取值范围为 1 0 2 a时, f x有两个极值点. 13 分 ()由()可知,

    22、当1a 时, 111 ( )lnln0 222 g xg aa , 所以 f x在(0 + ),上单调递减, 11 f x在区间0, 2a上的最小值为 2 (2 )2 (ln22)faaaa. 15 分 (21)(本小题 14 分) 解: ()由于 2 = n Axn:,(2)T为满足不等式 + ()(N ) nt xxtntn 的 * t构成的集合, 所以 有: 2 + 4(2)(N ,) ntnnnt, 当 2n时,上式可化为+2nt, 所以 5t. 当 =1n时,上式可化为3t. 所以 (2)T为3 5,. 4 分 ()对于数列 123n AxxxxLL: , , , ,若( )T t

    23、+ (N1)tt, 中均只有同一个元素,不妨设为a. 下面证明数列A为等差数列. 当 = +1n t时,有 1 (1)(1) tt xxat LL; 当 =1n t时,有 1 (1)(2) tt xxat LL; 由于(1),(2)两式对任意大于 1 的整数均成立, 所以 有 1 = (1) tt xxat 成立,从而数列 12n xxx, , ,LL为等差数列. 8 分 (III) 对于数列 123n AxxxxLL: , , , ,不妨设 ( )T ia, ( )T jb,1ijab , 由 ( )T ia可知:() ji xxa ji, 由 ( )T jb可知:() ij xxb ij,

    24、即() ji xxb ji, 从而()() ji a jixxb ji, 所以ab. 设 T i i t,则 23n tttLL, 这说明如果1ij ,则 ij tt. 因为对于数列 123n A xxxxLL: , , , ,( )T t + (N1)tt, 中均只有一个元素, 首先考察=2t时的情况,不妨设 21 xx, 因为 212 xxt,又 T 2为单元素集, 12 所以 212 xxt. 再证 332 txx,证明如下: 由 3 t的定义可知: 332 txx, 31 3 2 xx t , 所以 31 332 max 2 xx txx , 又由 2 t的定义可知 32221 =xxtxx, 所以 322131 332 22 = xxxxxx txx , 所以 323 xxt. 若 32 tt , 即 3322 txxt, 则存在正整数(4)m m ,使得 22 (2) m mtxx(3)LL, 由于 212323431kkk xxtxxtxxxxt LL 所以 2112 33 ()(2) mm miii ii xxxxtmt ,这与(3)矛盾. 所以 32 tt . 同理可证 2345 ttttL, 即数列 123n AxxxxLL: , , , ,为等差数列. 14 分

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:北京市东城区2019-2020学年度第二学期高三 一模数学试卷(官方版).docx
    链接地址:https://www.163wenku.com/p-1037650.html
    四川天地人教育
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库