初二数学上册知识点汇总.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《初二数学上册知识点汇总.doc》由用户(青草浅笑)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 上册 知识点 汇总 下载 _其它资料_数学_初中
- 资源描述:
-
1、初二初二数学(上册)知识点总结数学(上册)知识点总结 第一章第一章 勾股定理勾股定理 1 1、勾股定理、勾股定理 直角三角形两直角边 a,b 的平方和等于斜边 c 的平方,即 222 cba 2 2、勾股定理的逆定理、勾股定理的逆定理(直角三角形的判定条件)(直角三角形的判定条件) 如果三角形的三边长 a,b,c 有关系 222 cba,那么这个三角形是直角三角形,且最长边所对的角是 直角。 3、勾股数、勾股数:满足 222 cba的三个正整数,称为勾股数。 第二章第二章 实实 数数 一、实数的概念及分类一、实数的概念及分类 1、实数的分类、实数的分类 正有理数 有理数 零 有限小数和无限循环
2、小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 2、无理数、无理数:无限不循环小数叫做无理数。 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如 3 2,7等; (2)有特定意义的数,如圆周率 ,或化简后含有 的数,如 3 +8 等; (3)有特定结构的数,如 0.1010010001等; (4)某些三角函数值,如 sin60o等 二、实数的倒数、相反数和绝对值二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零) ,从数轴上看,互为 相反数的两个数所对应的点关于原点对
3、称,如果 a 与 b 互为相反数,则有 a+b=0,a=b,反之亦成立。 2、绝对值 在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。 (|a|0) 。零的绝对值是它本身,也可看成它 的相反数,若|a|=a,则 a0;若|a|=-a,则 a0。 3、倒数 如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。倒数等于本身的数是 1 和-1。零没有倒数。 4、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可) 。 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。 5、估算 三、平方根、算术三、平方根、算术平方根和
4、立方根平方根和立方根 2 1、算术平方根:一般地,如果一个正数 x 的平方等于 a,即 x2=a,那么这个正数 x 就叫做 a 的算术平方根。 特别地,0 的算术平方根是 0。 表示方法:记作“a” ,读作根号 a。 性质:正数和零的算术平方根都只有一个,零的算术平方根是零。 2、平方根:一般地,如果一个数 x 的平方等于 a,即 x2=a,那么这个数 x 就叫做 a 的平方根(或二次方根) 。 表示方法:正数 a 的平方根记做“a” ,读作“正、负根号 a” 。 性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。 开平方:求一个数 a 的平方根的运算,叫做开平方。
5、0a 注意a的双重非负性: a0 3、立方根 一般地,如果一个数 x 的立方等于 a,即 x3=a 那么这个数 x 就叫做 a 的立方根(或三次方根) 。 表示方法:记作 3 a 性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意: 33 aa,这说明三次根号内的负号可以移到根号外面。 四四、实数大小的比较、实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比 左边的大;两个负数,绝对值大的反而小。 2、实数大小比较的几种常用方法 (1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 (2)求差
6、比较:设 a、b 是实数, ,0baba ,0baba baba0 (3)求商比较法:设 a、b 是两正实数,;1;1;1ba b a ba b a ba b a (4)绝对值比较法:设 a、b 是两负实数,则baba。 (5)平方法:设 a、b 是两负实数,则baba 22 。 五、五、算术平方根有关计算算术平方根有关计算(二次根式)(二次根式) 1、含有二次根号“” ;被开方数 a 必须是非负数。 2、性质: (1))0()( 2 aaa )0( aa (2) aa 2 )0( aa (3))0, 0(babaab ()0, 0(baabba) 3 (4))0, 0(ba b a b a
7、()0, 0(ba b a b a ) 3、运算结果若含有“a”形式,必须满足: (1)被开方数的因数是整数,因式是整式; (2)被开方数中不 含能开得尽方的因数或因式; (3)分母中不能含有根号。 六、实数的运算六、实数的运算 (1)六六种运算:种运算:加、减、乘、除、乘方 、开方 (2)实数的运算顺序 先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。 (3)运算律)运算律 加法交换律:abba 加法结合律:)()(cbacba 乘法交换律:baab 乘法结合律:)()(bcacab 乘法对加法的分配律: acabcba )( 第三章第三章 位置与坐标位置与坐标 一、在平
8、面内,确定物体的位置一般需要两个数据。一、在平面内,确定物体的位置一般需要两个数据。 二二、平面直角坐标系、平面直角坐标系及有关概念及有关概念 1、平面直角坐标系 在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。 其中,水平的数轴叫做 x 轴或横轴,取向右为正方向;铅直的数轴叫做 y 轴或纵轴,取向上为正方向;x 轴和 y 轴统称坐标轴。它们的公共原点 O 称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 2、为了便于描述坐标平面内点的位置,把坐标平面被 x 轴和 y 轴分割而成的四个部分,分别叫做第一象限、第二 象限、第三象限、第四象限。 注意:x 轴和 y 轴上的
9、点(坐标轴上的点) ,不属于任何一个象限。 3、点的坐标的概念 对于平面内任意一点 P,过点 P 分别 x 轴、y 轴向作垂线,垂足在上 x 轴、y 轴对应的数 a,b 分别叫做点 P 的 横坐标、纵坐标,有序数对(a,b)叫做点 P 的坐标。 点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“, ”分开,横、纵坐标的位置不能 颠倒。平面内点的坐标是有序实数对,当ba 时, (a,b)和(b,a)是两个不同点的坐标。 平面内点的与有序实数对是一一对应的。 4、不同位置的点的坐标的特征 (1) 、各象限内点的坐标的特征 点 P(x,y)在第一象限0, 0yx 点 P(x,y)在第
10、二象限0, 0yx 点 P(x,y)在第三象限0, 0yx 点 P(x,y)在第四象限0, 0yx (2) 、坐标轴上的点的特征 点 P(x,y)在 x 轴上0 y,x 为任意实数 点 P(x,y)在 y 轴上0 x,y 为任意实数 4 点 P(x,y)既在 x 轴上,又在 y 轴上x,y 同时为零,即点 P 坐标为(0,0)即原点 (3) 、两条坐标轴夹角平分线上点的坐标的特征 点 P(x,y)在第一、三象限夹角平分线(直线 y=x)上x 与 y 相等 点 P(x,y)在第二、四象限夹角平分线上x 与 y 互为相反数 (4) 、和坐标轴平行的直线上点的坐标的特征 位于平行于 x 轴的直线上的
11、各点的纵坐标相同。 位于平行于 y 轴的直线上的各点的横坐标相同。 (5) 、关于 x 轴、y 轴或原点对称的点的坐标的特征 点 P 与点 p关于 x 轴对称横坐标相等,纵坐标互为相反数,即点 P(x,y)关于 x 轴的对称点为 P(x,-y) 点 P 与点 p关于 y 轴对称纵坐标相等,横坐标互为相反数,即点 P(x,y)关于 y 轴的对称点为 P(-x,y) 点 P 与点 p关于原点对称横、纵坐标均互为相反数,即点 P(x,y)关于原点的对称点为 P(-x,-y) (6)、点到坐标轴及原点的距离 点 P(x,y)到坐标轴及原点的距离: (1)点 P(x,y)到 x 轴的距离等于y (2)点
12、 P(x,y)到 y 轴的距离等于x (3)点 P(x,y)到原点的距离等于 22 yx 三、坐标变化与图形变化的规律:三、坐标变化与图形变化的规律: 坐标( x , y )的变化 图形的变化 x a 或 y a 被横向或纵向拉长(压缩)为原来的 a 倍 x a, y a 放大(缩小)为原来的 a 倍 x ( -1)或 y ( -1) 关于 y 轴或 x 轴对称 x ( -1), y ( -1) 关于原点成中心对称 x +a 或 y+ a 沿 x 轴或 y 轴平移 a 个单位 x +a, y+ a 沿 x 轴平移 a 个单位,再沿 y 轴平移 a 个单 第四章第四章 一次函数一次函数 一、函数
13、:一、函数: 一般地,在某一变化过程中有两个变量 x 与 y,如果给定一个 x 值,相应地就确定了一个 y 值,那么我们称 y 是 x 的函数,其中 x 是自变量,y 是因变量。 二、自变量取值范围二、自变量取值范围 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数) ,分式(分母不为 0) 、二次根式(被开方数为非负数) 、实际意义几方面考虑。 三、函数的三种表示法及其优缺点三、函数的三种表示法及其优缺点 (1)关系式(解析)法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式 (解析)法。 (2)列表法 把自变量
14、 x 的一系列值和函数 y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图象法 用图象表示函数关系的方法叫做图象法。 四、由函数关系式画其图像的一般步骤四、由函数关系式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 5 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 五、正比例函数和一次函数五、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,若两个变量 x,y 间的关系可以表示成bkxy(k,b 为常数,k0)的形式,则称 y 是 x 的一 次函数(x 为自
展开阅读全文