书签 分享 收藏 举报 版权申诉 / 29
上传文档赚钱

类型八省市2021届高三新高考统一适应性考试考前热身模拟数学试题(二)(解析版).doc

  • 上传人(卖家):cbx170117
  • 文档编号:1023453
  • 上传时间:2021-01-15
  • 格式:DOC
  • 页数:29
  • 大小:2.83MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《八省市2021届高三新高考统一适应性考试考前热身模拟数学试题(二)(解析版).doc》由用户(cbx170117)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    省市 2021 届高三新 高考 统一 适应性 考试 考前 热身 模拟 数学试题 解析 下载 _模拟试题_高考专区_数学_高中
    资源描述:

    1、江苏江苏 福建福建 广东广东 河北河北 辽宁辽宁 湖北湖北 湖南湖南 重庆等八省市重庆等八省市 2021 届高三新高考统一适应性考试届高三新高考统一适应性考试 数学试题数学试题(二二) 考试时间:考试时间:120 分钟分钟 一一 单选题单选题(共共 40 分分) 1. 已知全集U R, 2 20Ax xx,1Bx x,则 U AB ( ) A. 0 x x B. 1x x C. 2x x D. 01xx 【答案】C 【分析】解出集合A中的不等式,然后可得答案. 【详解】因为 2 20 =02Ax xxxx ,1Bx x 所以1 UB x x ,所以 U AB 2x x 故选:C 2. 设 5

    2、3a , 3 log 0.2b , 2 log 3c ,则( ) A. abc B. cba C. acb D. cab 【答案】D 【分析】利用对应指对数函数性质即可判断a,b,c的范围,即可知它们的大小关系. 【详解】由3xy 的性质知:01a, 由 3 logyx的性质知:0b , 由 2 logyx的性质知:1c,所以cab.故选:D 3. 已知 2 6 sin 7 , 10 cos 5 ,且 3 0 4 , 3 0 4 ,则sin( ) A. 9 15 35 B. 11 10 35 C. 15 35 D. 10 35 【答案】A 【分析】易知sinsin,利用角的范围和同角三角函数关

    3、系可求得cos和sin, 分别在 15 sin 5 和 15 5 两种情况下,利用两角和差正弦公式求得sin,结合的范围可确定 最终结果. 【详解】 2 62 sin 72 且 3 0 4 ,0 4 , 2 5 cos1 sin 7 . 又 3 0 4 , 3 44 , 2 15 sin1 cos 5 . 当 15 sin 5 时, sinsinsincoscossin 2 61051515 757535 , 3 0 4 ,sin0, 15 sin 35 不合题意,舍去; 当 15 sin 5 ,同理可求得 9 15 sin 35 ,符合题意. 综上所述: 9 15 sin 35 .故选:A.

    4、 【点睛】 易错点睛: 本题中求解cos时, 易忽略sin的值所确定的的更小的范围, 从而误认为cos的 取值也有两种不同的可能性,造成求解错误. 4. 已知直线l与曲线 x f xe和 lng xx分别相切于点 11 ,A x y, 22 ,B x y.有以下命题: (1) 90AOB(O为原点); (2) 1 1,1x ; (3) 当 1 0 x 时, 21 221xx.则真命题的个数为 ( ) A. 0 B. 1 C. 2 D. 3 【答案】C 【分析】先利用导数求斜率得到直线l的方程,可得出 1 1 2 12 1 1ln1 x x e x exx ,分类讨论 1 x的符号,计算化 简

    5、11 1 xx OA OBx ee 并判断其符号即得命题正确;由 1 1 2 12 1 1ln1 x x e x exx 结合指数与对数的互 化,得到 1 1 1 1 0 1 x x e x ,即得 1 x的范围,得命题错误;构造函数 1 1 1 1 ( ) 1 x x F xe x ,研究其零点 1 3 2, 2 x ,再构造函数( ) x h xex 并研究其范围,即得到 1 211 2 22 x xxex ,得到命题 正确. 【详解】 x f xe, x fxe,所以直线l的斜率 1 1 x ke,直线l的方程为 11 1 xx yeexx, 即 11 1 1 xx ye xx e, 同

    6、 理 根 据 lng xx可 知 , 直 线l的 方 程 为 2 2 1 ln1yxx x , 故 1 1 2 12 1 1ln1 x x e x exx ,得 12 2 1 lnlnxx x . 命题中,若 1 0 x ,由 1 2 1 x e x 可得 2 1x ,此时等式 1 12 1ln1 x exx不成立,矛盾; 1 0 x 时, 1111 1212111 xxxx OA OBx xy yx eexx ee ,因此, 若 1 0 x ,则 11 0 xx,有 11 0 xx ee ,此时0OA OB; 若 1 0 x,则 11 0 xx,有 11 0 xx ee ,此时0OA OB

    7、. 所以根据数量积定义知,cos0AOB,即90AOB,故正确; 命题中,由 1 1 2 12 1 1ln1 x x e x exx 得 1 211 111 ln111 0 111 x xxx e xxx ,得 1 1x 或 1 1x ,故错 误; 命题中,因为 21 ln 2111 xx xxexex ,由知, 1 1 1 1 1 x x e x , 1 1x 或 1 1x , 故当 1 0 x 时,即 1 1x ,设 1 1 1 1 ( ) 1 x x F xe x ,则 1 2 1 2 ( )0 1 x F xe x ,故 ( )F x在, 1 是增函数,而 2 1 ( 2)0 3 Fe

    8、, 3 2 31 0 25 Fe ,故 1 1 1 1 ( )0 1 x x F xe x 的 根 1 3 2, 2 x ,因为 21 ln 2111 xx xxexex ,故构造函数( ) x h xex , 3 2, 2 x ,则 10 x h xe ,故( )h x在 3 2, 2 上单调递减,所以 3 2 333 ( )52 22 222 x h xexge ,故 21 221xx,故正确. 故选:C. 【点睛】本题考查了利用导数几何意义求曲线的切线,考查了利用函数的单调性研究函数的零点问题,属 于函数的综合应用题,属于难题. 5. 琵琶、二胡、编钟、箫笛、瑟、琴、埙、笙和鼓这十种民族

    9、乐器被称为“中国古代十大乐器”为弘扬中 国传统文化,某校以这十种乐器为题材,在周末学生兴趣活动中开展了“中国古代乐器”知识讲座,共连续安 排八节课,一节课只讲一种乐器,一种乐器最多安排一节课,则琵琶、二胡、编钟一定安排,且这三种乐 器互不相邻的概率为( ) A. 1 360 B. 1 6 C. 7 15 D. 1 15 【答案】B 【分析】先求出全部的结果总数为 8 10 A,再求出琵琶、二胡、编钟一定安排,且这三种乐器互不相邻的基本 事件总数为 53 76 A A,再利用古典概型的概率求解. 【详解】从这十种乐器中挑八种全排列,有情况种数为 8 10 A从除琵琶、二胡、编钟三种乐器外的七种乐

    10、器 中挑五种全排列,有 5 7 A种情况,再从排好的五种乐器形成的 6个空中挑 3个插入琵琶、二胡、编钟三种乐 器,有 3 6 A种情况,故琵琶、二胡、编钟一定安排,且这三种乐器互不相邻的情况种数为 53 76 A A 所以所求的概率 53 76 8 10 1 6 A A P A ,故选:B 【点睛】方法点睛:排列组合常用的方法有:一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特 殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法. 6. 九章算术与几何原本并称现代数学的两大源泉.在九章算术卷五商功篇中介绍了羡除(此处 是指三面为等腰梯形,其他两侧面为直角三角形

    11、的五面体)体积的求法.在如图所示的羡除中,平面ABDA 是铅垂面,下宽3mAA,上宽4mBD ,深3m,平面 BDEC是水平面,末端宽5mCE ,无深,长 6m(直线CE到BD的距离) ,则该羡除的体积为( ) A. 3 24m B. 3 30m C. 3 36m D. 3 42m 【答案】C 【分析】在BD,CF上分别取点 B , C ,使得3mBBCC,连接A B ,AC ,BC ,把几何体 分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算 【详解】如图,在BD,CF上分别取点 B , C ,使得3mBBCC,连接A B ,AC ,BC ,则 三 棱 柱A B CA B C是 斜

    12、 三 棱 柱 , 该 羡 除 的 体 积VV 三棱柱 A B CABC V四棱锥 ABD E C 3 1112 363633 6m 232 .故选:C 【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不 规则几何体体积的计算转化为锥体、柱体体积的计算考查了空间想象能力、逻辑思维能力、运算求解能 力 7. 已知 1 F, 2 F分别是椭圆 22 22 1(0) xy ab ab 的左、右焦点,P是椭圆上一点(异于左、右顶点) ,若 存在以 2 2 c为半径的圆内切于 12 PFF,则椭圆的离心率的取值范围是( ) A. 1 0, 3 B. 2 0, 3

    13、C. 12 , 33 D. 2 ,1 3 【答案】A 【分析】根据三角形的面积关系,可得 121 222 222 p accc y,再根据| | P yb可得关于 , a c的不等 式,从而可求得离心率的取值范围. 【详解】 12 PFF的面积关系可得: 121 222 222 p accc y, 22 p ac cc ybc ,2acb, 2 2 2acb,则 22 023aacc, 30acac,3ac, 1 0 3 e.故选:A. 【点睛】本题考查椭圆的定义运用、三角形内切圆、椭圆的离心率,考查函数与方程思想、转化与化归思 想,考查逻辑推理能力、运算求解能力,求解时注意不等关系的建立.

    14、8. 2019 年末,武汉出现新型冠状病毒肺炎(COVID 19)疫情,并快速席卷我国其他地区,传播速度很 快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武 汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从 2 月 7日起举全市之力入户上门排查确诊的新 冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四 类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户 6 口之家被确认为“与确诊患者的密 切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该 家庭

    15、为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为p(0 1p )且相互独立,该家庭至少 检测了 5个人才能确定为“感染高危户”的概率为( )f p,当 0 pp时,( )f p最大,则 0 p ( ) A. 6 1 3 B. 6 3 C. 1 2 D. 3 1 3 【答案】A 【分析】根据题意分别求出事件 A:检测 5 个人确定为“感染高危户”发生的概率和事件 B:检测 6 个人确 定为“感染高危户”发生的概率,即可得出( )f p的表达式,再根据基本不等式即可求出. 【详解】设事件 A:检测 5 个人确定“感染高危户”, 事件 B:检测 6 个人确定为“感染高危户”, 4 1P App

    16、, 5 1P Bpp. 即 454 11( )21f pppppppp 设10 xp ,则 424 11( )1g xxx xxf px 3 222 24222 22 114 122 22327 xxx g xxxxxx 当且仅当 22 22xx即 6 3 x 时取等号,即 0 6 1 3 pp .故选:A 【点睛】本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应用,互斥事件概率加法公式的 应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学 建模能力,属于较难题. 二二 多选题多选题(共共 20 分分) 9. 甲罐中有 4个红球,3个

    17、白球和 3 个黑球;乙罐中有 5 个红球,3个白球和 2个黑球先从甲罐中随机取 出一球放入乙罐,分别以 1 A, 2 A和 3 A表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取 出一球,以M表示由乙罐取出的球是红球的事件,下列的结论:其中正确结论的为( ) A. 1 2 P M B. 1 6 11 P M A C. 事件M与事件 1 A不相互独立 D. 1 A, 2 A, 3 A是两两互斥的事件 【答案】BCD 【分析】根据古典概型概率计算公式及事件的相关概念,逐一分析四个选项的真假,可得答案 【详解】解:甲罐中有 4个红球,3 个白球和 3个黑球;乙罐中有 5 个红球,3个白球

    18、和 2 个黑球 先从甲罐中随机取出一球放入乙罐,分别以 1 A、 2 A和 3 A表示由甲罐取出的球是红球,白球和黑球的事件; 再从乙罐中随机取出一球,以M表示由乙罐取出的球是红球的事件, 对 A, 463535541 () 1011101110111102 P M ,故 A错误; 对 B, 1 1 1 46 ()6 1011 (|) 4 ()11 10 P MA P M A P A ,故 B 正确; 对 C,当 1 A发生时, 6 () 11 P M ,当 1 A不发生时, 5 () 11 P M ,事件M与事件 1 A不相互独立,故 C 正确; 对 D, 1 A, 2 A, 3 A不可能同

    19、时发生,故是两两互斥的事件,故 D正确;故选:BCD 【点睛】本题考查概率的基本概念及条件概率,互斥事件概率加法公式,考查运算求解能力. 10. 定义空间两个向量的一种运算sin,ababa b,则关于空间向量上述运算的以下结论中恒成立 的有( ) A. abab B. a bba C. abcacbc D. 若 11 ,ax y, 22 ,bxy,则 122 abx yx y 【答案】BD 【 分 析 】 对 于A,B, 只 需 根 据 定 义 列 出 左 边 和 右 边 的 式 子 即 可 , 对 于C, 当 ab= 时 , 1sin,abcbcb c, sin,sin,1sin,acbc

    20、bcb cbcb cbcb c,显然不会恒成立. 对于 D, 根据数量积求出cos, a b,再由平方关系求出sin, a b的值,代入定义进行化简验证即可. 【详解】解:对于 A: sin,aba ba b,sin,ababa b, 故abab不会恒成立; 对于 B,sin,ababa b,=sin,babab a,故a bba 恒成立; 对于 C,若 ab= ,且0,1sin,abcbcb c, sin,sin,1sin,acbcbcb cbcb cbcb c, 显然abcacbc不会恒成立; 对于 D, 1212 cos, x xy y a b ab , 2 1212 sin,1 x x

    21、y y a b ab , 即有 2 2 2 12121212 1 x xy yx xy y ababab a ab 2 2222 1212 1122 22 11 x xy y xyxy xy 2 22222222 1122121212211212 2xyxyx xy yx yx yx x y y 1221 x yx y. 则 1221 abx yx y恒成立.故选:BD. 【点睛】本题考查向量的新定义,理解运算法则正确计算是解题的关键,属于较难题. 11. 已知等比数列 n a的公比为 q,前 n 项和0 n S ,设 21 3 2 nnn baa ,记 n b的前 n项和为 n T,则下 列

    22、判断正确的是( ) A. 若 1q ,则 nn TS B. 若2q ,则 nn TS C. 若 1 4 q ,则 nn TS D. 若 3 4 q ,则 nn TS 【答案】BD 【分析】先求得q的取值范围,根据q的取值范围进行分类讨论,利用差比较法比较出 n T和 n S的大小关系. 【详解】由于 n a是等比数列,0 n S ,所以 11 0,0aSq, 当1q 时, 1 0 n Sna,符合题意; 当1q 时, 1 1 0 1 n n aq S q ,即10 1 n q q ,上式等价于 10 10 n q q 或 10 10 n q q .解得1q . 解,由于n可能是奇数,也可能是偶

    23、数,所以 1,00,1q . 综上所述,q的取值范围是 1,00,. 2 21 33 22 nnnn baaaqq ,所以 2 3 2 nn Tqq S ,所以 2 31 12 22 nnnn TSSqqSqq ,而0 n S ,且1,00,q . 所以,当 1 1 2 q ,或2q 时,0 nn TS,即 nn TS,故 BD选项正确,C 选项错误 当 1 2(0) 2 qq时,0 nn TS,即 nn TS. 当 1 2 q 或2q =时,0, nnnn TSTS,A 选项错误. 综上所述,正确的选项为 BD.故选:BD 【点睛】本小题主要考查等比数列的前n项和公式,考查差比较法比较大小,

    24、考查化归与转化的数学思想 方法,考查分类讨论的数学思想方法,属于中档题. 12. 关于函数 ecos x f xax,,x 下列说法正确的是( ) A. 当1a 时, f x在0 x处的切线方程为y x B. 若函数 f x在,上恰有一个极值,则0a C. 对任意0a, 0f x 恒成立 D. 当1a 时, f x在,上恰有 2个零点 【答案】ABD 【分析】直接逐一验证选项,利用导数的几何意义求切线方程,即可判断 A 选项;利用分离参数法,构造 新函数和利用导数研究函数的单调性和极值、最值,即可判断 BC选项;通过构造新函数,转化为两函数的 交点个数来解决零点个数问题,即可判断 D 选项.

    25、【详解】解:对于 A,当1a 时, ecos x fxx ,,x , 所以 0 0ecos00f,故切点为(0,0) , 则 esin x fxx,所以 0 0esin01 f ,故切线斜率为 1, 所以 f x在0 x处的切线方程为:010yx ,即y x ,故 A正确; 对于 B, ecos x f xax,,x ,则 esin x fxax, 若函数 f x在,上恰有一个极值,即 0fx 在,上恰有一个解, 令 0fx ,即esin0 x ax在 ,上恰有一个解, 则 sin x x a e 在,上恰有一个解, 即y a 与 sin x x g x e 的图象在,上恰有一个交点, sin

    26、cos x xx gx e ,,x , 令 0g x ,解得: 1 3 4 x , 2 4 x , 当 3 , 44 x 时, 0g x ,当 3 , 44 x 时, 0gx , g x在 3 , 4 上单调递增,在 44 3 , 上单调递减,在, 4 上单调递增, 所以极大值为 3 4 2 3 2 0 4 g e ,极小值为 4 2 2 0 4 g e , 而 0,0,00ggg, 作出 sin x g x e ,,x 的大致图象,如下: 由图可知,当0a时,y a 与 sin x g x e 的图象在,上恰有一个交点, 即函数 f x在,上恰有一个极值,则0a,故 B正确; 对于 C,要使

    27、得 0f x 恒成立, 即在,x 上, ecos0 x f xax恒成立, 即在,x 上, cos x x a e 恒成立,即 max cos x x a e , 设 cos x x h x e ,,x ,则 sincos x xx h x e ,,x , 令 0h x ,解得: 1 4 x , 2 3 4 x , 当 3 , 44 x 时, 0h x ,当 3 , 44 x 时, 0h x , h x在 , 4 上单调递增,在 3 , 44 上单调递减,在 3 , 4 上单调递增, 所以极大值为 4 2 2 0 4 h e , 11 ,hh ee , 所以 cos x x h x e 在,x

    28、 上的最大值为 4 2 2 0 4 h e , 所以 4 2 2 a e 时,在,x 上, ecos0 x f xax恒成立, 即当 4 2 2 a e 时, 0f x 才恒成立, 所以对任意0a, 0f x 不恒成立,故 C 不正确; 对于 D,当1a 时, ecos x fxx ,,x , 令 0f x ,则 ecos0 x f xx,即e cos x x, 作出函数 x ye和 cosyx 的图象,可知在,x 内,两个图象恰有两个交点, 则 f x在,上恰有 2个零点,故 D正确. 故选:ABD. 【点睛】本题考查函数和导数的综合应用,考查利用导数的几何意义求切线方程,考查分离参数法的应

    29、用 和构造新函数,以及利用导数研究函数的单调性、极值最值、零点等,考查化简运算能力和数形结合思想. 三三 填空题填空题(共共 20 分分) 13. 若 17217 01217 (2)(1)(1)(1)xaaxaxax,则 012316 aaaaa_. 【答案】 17 21 【分析】 先利用二项展开式的通项公式求解 17 1a,然后利用赋值法求解 012316 aaaaa. 【详解】由题意,由 1717 (2)1 (1)xx, 17 17 1 (1)Tx , 17 1a, 令0 x,则 17 01217 2aaaa,所以 17 012316 21aaaaa. 故答案为: 17 21 . 14.

    30、已知ABC的外心为,34O AO BCBO AC CO BA,则cosB的取值范围是_. 【答案】 2 ,1 3 【分析】 作出图示,取 BC 的中点 D,则有ODBC,再由向量的线性表示和向量数量积的运算得出 22 1 2 AO BCbc, 22 1 2 BO ACac, 22 1 2 CO BAba,代入已知得 222 +23acb,由 余弦定理表示cosB,再由基本不等式可求得范围. 【详解】作出图示如下图所示,取 BC 的中点 D,连接 OD,AD,因为ABC的外心为 O,则ODBC, 因为+AO BCAD DOBCAD BC DO BCAD BC, 又 22 22 111 + 222

    31、 AD BCAB ACACABACABbc,所以 22 1 2 AO BCbc, 同理可得 22 1 2 BO ACac, 22 1 2 CO BAba, 所以 34AO BCBO ACCO BA 化为 222222 111 34 222 bcacba , 即 222 +23acb . 由余弦定理得 2222 22222 1 +2 12 3 cos 2232 + acac acbac B acacac , 又 22 22 2 2 22 +acac acac ,当且仅当2ac时,取等号,又0B,所以 2 cos1 3 B . 故答案为: 2 ,1 3 . 【点睛】本题考查向量的数量积运算,以及三

    32、角形的外心的定义和性质,关键在于三角形的外心的定义和 向量的线性表示,转化表示向量的数量积,将已知条件转化为三角形的边的关系,属于较难题. 15. 九章算术 中记载: 将底面为直角三角形的直三棱柱称为堑堵, 将一堑堵沿其一顶点与相对的棱剖开, 得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形 的四面体).在如图所示的堑堵 111 ABCABC中, 1 2 3,2,4,BBBCABAC且有鳖臑 C1-ABB1和 鳖臑 1 CABC,现将鳖臑 1 CABC沿线 BC1翻折,使点 C与点 B1重合,则鳖臑 1 CABC经翻折后,与 鳖臑 11 CABB拼接

    33、成的几何体的外接球的表面积是_. 【答案】 100 3 【分析】 当 1 CABC沿线 BC1翻折,使点 C 与点 B1重合,则鳖臑 1 CABC经翻折后,A 点翻折到 E 点,,A E关 于B对称,所拼成的几何体为三棱锥 11 CAEB,根据外接球的性质及三棱锥性质确定球心,利用勾股定理 求出半径即可求解. 【详解】当 1 CABC沿线 BC1翻折,使点 C 与点 B1重合,则鳖臑 1 CABC经翻折后,A点翻折到 E 点, ,A E关于B对称,所拼成的几何体为三棱锥 11 CAEB,如图, 由 1 2 3,2,4,BBBCABAC 可得 22 11 4ABBBAB , 22 11 4BEB

    34、BBE , 即 1 B AE为正三角形, 所以外接圆圆心为三角形中心 1 O, 设三棱锥外接球球心为O,连接 1 OO,则 1 OO 平面 1 AB E,连接 1 OC, 1 OB,在 11 OBCV中作 11 OMBC, 垂足为M,如图, 因为 11 OCOBR, 11 OMBC, 所以M是 11 BC的中点,由矩形 11 MOOB可知 111 11 3 22 OOBCBC, 因为 1 O为三角形 1 AB E的中心, 所以 111 224 3 2 3 333 BOB B 在 11 Rt BOOV中, 22 111 165 3 3 33 ROOBO , 所以 2 100 4 3 SR , 故

    35、答案为: 100 3 【点睛】本题主要考查了几何体的翻折问题,三棱锥的外接球,球的表面积公式,考查了空间想象力,属 于难题. 16. 对于正整数 n, 设 n x是关于 x的方程 2 1 2 1 log3 n n xnn x 的实数根.记 1 2 n n a x , 其中 x表示不 超过 x 的最大整数,则 1 a _;设数列 n a的前 n项和为 n S则 2020 S_. 【答案】 (1). 0 (2). 1010 【分析】 (1)当1n 时,化简方程,通过构造函数方法,找到函数零点的范围,进而求出结果. (2)令 1 2 n n t x ,化简方程,通过构造函数的方法,找到零点的范围,即

    36、 n t得范围,分类讨论n为奇数和 偶数时 n a,求得结果. 【详解】 (1)当1n 时, 2 2 1 log4x x , 设 2 2 1 ( )log4f xx x 单调递减, 1 ( )10 2 f,(1)30f ,所以 1 1 1 2 x, 1 11 1 22 x 1 1 1 0 2 a x (2)令 1 2 n n t x ,则方程化为: 22 +1 (2 )log23 nnn tntnn 令 22 +1 ( )(2 )log23 n f xxnxnn,则( )f x在(0,)单调递增 +1 ( )log30 2 n n fnnn; +1 ()10 2 n f 由零点存在定理可得:

    37、1 ( ,) 22 n n x,( )0f x , 当 21()nkk N , 21 (, ) 2 n k tk, 1 nn atk 当2 ()nk k N, 21 () 2 , n k tk, nn atk 所以当 10101010 2 2020 11 (1)1010 kk Skk, 2020 1010S 故答案为:0;1010 【点睛】本题考查了函数的性质、零点存在定理,数列求和等基本知识,考查了运算求解能力和逻辑推理 能力,转化和分类讨论的数学思想,属于难题. 四四 解答题解答题(共共 70 分分) 17. 已知数列 n a的前n项和为 n S,且 2 2 n nn S ,数列 n b满

    38、足: 2 log nn ab, * nN . (1)求数列 n a, n b的通项公式; (2)设 1 ,? (2) 2 ,? n n n n a n c n b 为奇数 为偶数 , n T为数列 n c的前n项和,求 2n T. 【答案】 (1) n an,2n n b ; (2) 2 712 62 213 4 n n T n 【分析】 (1)根据 2 2 n nn S ,利用数列的通项与前n项和的关系 1 1 ,1 ,2 n nn S n a SSn 求解; (2)由(1)知, n an,2n n b 得到 1 1 2 1 2 n n n n n c n 为奇数 为偶数 ,然后利用分组求和

    39、法求解. 【详解】 (1)数列 n a的前n项和 2 2 n nn S , 当1n 时, 11 1aS 当2n时, 2 2 n nn S , 2 1 11 2 n nn S , 两式相减得: 1nnn aSSn (2)n 又1n 时, 1 1a 满足上式 所以 n an 又 2 log nn ab,所以 2 log n nb , 所以2n n b . (2) 1 2 2 n n n n an c n b 为奇数 为偶数 ,由(1)知, n an,2n n b 所以 1 1 2 1 2 n n n n n c n 为奇数 为偶数 21321242 ()() nnn Tcccccc 21 1111

    40、11 . 1 33 52121282 n nn 11 1 11111124 1 1 23352121 1 4 n nn 1121 (1)(1) 22134nn 712 62(21)34nn 【点睛】方法点睛:求数列的前 n项和的方法 (1)公式法:等差数列的前 n项和公式, 1 1 1 22 n n n aan n Snad 等比数列的前 n项和公式 1 1 ,1 1 ,1 1 n n na q Saq q q ; (2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解 (3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项 (4)倒序相加法:把数

    41、列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广 (5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的 前 n项和用错位相减法求解. (6)并项求和法:一个数列的前 n 项和中,可两两结合求解,则称之为并项求和形如 an(1)nf(n)类型, 可采用两项合并求解 18. 已如函数 2 2 3sin sin2cos1 2 f xxxx (1)求函数 f x的单调递增区间; (2)在锐角ABC中,内角 A,B,C的对边分别为 a,b,c,已知 2f A ,2a,求ABC面积 的最大值 【答案】 (1) , 63 kkk Z; (2) 3 【

    42、分析】 (1)先将函数整理,得到 2sin 2 6 f xx ,根据正弦函数单调性,列出不等式求解,即可得出结果; (2)由(1)根据题中条件,先求出 3 A,根据余弦定理,求出 22 4bcbcbc,进而可求出三角 形面积的最值. 【详解】 (1) 31 2 3sin coscos22sin2cos22sin 2 226 f xxxxxxx , 由 2 22 262 kxkkZ, 得 63 kxkkZ, 函数 f x的单调递增区间为 , 63 kkk Z (2) 2f A , 2sin 22 6 A ,即 sin 21 6 A , ABC为锐角三角形, 2 62 A, 3 A 在ABC中,由

    43、余弦定理得: 222 2cosabcbcA, 又2a, 22 42bcbcbcbcbc,当且仅当2bc时,max 4bc, 1 sin3 2 ABC SbcA ,当2bc时,max3 ABC S 【点睛】方法点睛: 求解三角形中有关边长、角、面积的最值(范围)问题时,常利用正弦定理、余弦定理与三角形面积公式, 建立a b,ab, 22 ab之间的等量关系与不等关系,然后利用函数或基本不等式求解. 19. 第 13 届女排世界杯于 2019 年 9 月 14 日在日本举行,共有 12 支参赛队伍.本次比赛启用了新的排球用 球 MIKSA-V200W , 已知这种球的质量指标 (单位:g )服从正

    44、态分布 N (270, 2 5 ).比赛赛制采取单循环方式, 即每支球队进行 11 场比赛(采取 5 局 3 胜制),最后靠积分选出最后冠军积分规则如下:比赛中以 3:0 或 3:1 取胜的球队积 3 分,负队积 0 分;而在比赛中以 3:2 取胜的球队积 2 分,负队积 1 分.已知第 10 轮中国队对抗 塞尔维亚队,设每局比赛中国队取胜的概率为 p(0p1). (1)如果比赛准备了 1000 个排球,估计质量指标在(260,265内的排球个数(计算结果取整数). (2)第 10 轮比赛中,记中国队 3:1 取胜的概率为 fp. (i)求出 f(p)的最大值点 0 p; (ii)若以 0 p

    45、作为 p 的值记第 10 轮比赛中,中国队所得积分为 X,求 X 的分布列. 参考数据: N(u, 2 ),则 p(-X+)0.6826,p(-2X +2)0.9644. 【答案】 (1)140; (2) (i) 0 3 4 p ; (ii)分布列见解析. 【分析】 (1)由正态分布3原则即可求出排球个数; (2) (i)根据二项分布先求出( )f p,再利用导数求出( )f p取得最大值时 0 p的值; (ii)根据比赛积分规则,得出中国队得分可能的取值,然后求出分布列. 【详解】 (1)因为 服从正态分布 N (270, 2 5 ),所以 0.96440.6826 2602650.1409

    46、 2 P , 所以质量指标在(260,265内的排球个数为1000 0.1409 140.9 140个; (2) (i) 233 3 131fpC pppp, 223 31+13334ppfpppp 令( )0fp ,得 3 4 p , 当 3 (0, ) 4 p时,( )0fp , ( )f p在 3 (0, ) 4 上单调递增; 当 3 ( ,1) 4 p时,( )0fp,( )f p在 3 (,1) 4 上单调递减; 所以( )f p的最大值点 0 3 4 p ; (ii)X的可能取值为 0,1,2,3. 212 3 13 (0)(1)(1) 256 P XpC pp; 223 4 27 (1)(1) 512 P XC pp; 222 4 81 (2)(1) 512 P XC ppp; 222 3 189 (3)(1) 256 P XpC pp p; 所以X的分布列为 X 0 1 2 3 P 13 256 27 512 81

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:八省市2021届高三新高考统一适应性考试考前热身模拟数学试题(二)(解析版).doc
    链接地址:https://www.163wenku.com/p-1023453.html
    cbx170117
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库