八年级上册数学人教版知识要点汇总.pdf
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《八年级上册数学人教版知识要点汇总.pdf》由用户(永遠守護你)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 上册 学人 知识 要点 汇总 下载 _一轮复习_中考专区_语文_初中
- 资源描述:
-
1、第十一章三角形 1. 三角形的定义定义:不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。 组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点 是三角形的顶点。 三角形 ABC 用符号表示为ABC.三角形 ABC 的顶点 C 所对的边 AB 可用 c 表示,顶点 B 所对的边 AC 可用 b 表 示,顶点 A 所对的边 BC 可用 a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形; (3)ABC 是三角形 ABC 的符号标记,单独的没有意义 2、(1)三角形按边分类: (2)三角形按角分类: 3
2、、三角形的三边关系 三角形的任意两边之和大于第三边. 三角形的任意两边之差小于第三边。 注意: (1)三边关系的依据是:两点之间线段最短; (2)围成三角形的条件是:任意两边之和大于第三边 三角形 等腰三角形 不等边三角形 底边和腰不相等的等腰三角形 等边三角形 三角形 直角三角形 斜三角形 锐角三角形 钝角三角形 关注微信公众号“捷思课堂”获取更多学习资料!第1页 DCB A 2 1 DCB A DCB A 4、和三角形有关的线段: (1)三角形的中线 三角形中,连结一个顶点和它对边中点的线段 表示法:1、AD 是ABC 的 BC 上的中线.2、BD=DC=0.5BC. 3、AD 是ABC
3、的中线; 注意:三角形的中线是线段;三角形三条中线全在三角形的内部; 三角形三条中线交于三角形内部一点; 中线把三角形分成两个面积相等的三角形 (2)三角形的角平分线 三角形一个内角的平分线与它的对边相交,这个角与交点之间的线段。 表示法:1、AD 是ABC 的BAC 的平分线.2、1=2=0.5BAC. 3、AD 平分BAC,交 BC 于 D 注意:三角形的角平分线是线段;三角形三条角平分线全在三角形的内部; 三角形三条角平分线交于三角形内部一点; (3)三角形的高 三角形的高:从三角形的一顶点向它的对边作垂线, 顶点和垂足之间的线段叫做三角形的高, 表示法:1、AD 是ABC 的 BC 上
4、的高。 2、ADBC 于 D。 3、ADB=ADC=90。4、AD 是ABC 的高。 注意:三角形的高是线段:高与垂线不同,高是线段,垂线是直线。 锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在三角形外; 三角形三条高所在直线交于一点 (而锐三角形的三条高的交点在三角形的内部 , 直角三角形三条高的交 战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。) 关注微信公众号“捷思课堂”获取更多学习资料!第2页 2 1 B A C M D 4、三角形的内角和定理 定理:三角形的内角和等于 180 推论:直角三角形的两个锐角互余。 5、三角形内角外角的关系: (1
5、)三角形三个内角的和等于 180; (2)三角形的一个外角等于和它不相邻的两个内角的和; (3)三角形的一个外角大于任何一个和它不相邻的内角. (4)直角三角形的两个锐角互余. 6、三角形的外角的定义: 三角形一边与另一边的延长线组成的角,叫做三角形的外角. 注意:每个顶点处都有两个外角,但这两个外角是对顶角. 如:ACD、BCE 都是ABC 的外角,且ACD=BCE, 所以说一个三角形有六个外角,但我们每个一个 顶点处只选一个外角,这样三角形的外角就只有三个了. 7. 三角形外角的性质 (1)三角形的一个外角等于它不相邻的两个内角之和 (2)三角形的一个角大于与它不相邻的任何一个内角 注意:
6、(1)它不相邻的内角不容忽视; (2)作 CMAB 由于 B、C、D 共线 A=1,B=2. 即ACD=1+2=A+B. 那么ACDA.ACDB。 8、(1)多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 多边形的内角:多边形相邻两边组成的角叫做它的内角。 关注微信公众号“捷思课堂”获取更多学习资料!第3页 多边形内角和公式:n 边形的内角和等于(n-2)180 多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 多边形的外角和:多边形的内角和为 360。 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 多边形对角线的条数: (
7、1)从 n 边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。 (2)n 边形共有 2 3)-n(n 条对角线。 (2)正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。 平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。 9、三角形的稳定性: 三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性 注意:(1)三角形具有稳定性;(2)四边形没有稳定性。(3)多边形没有稳定性。 第十二章全等三角形 一、全等三角形 能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。 2、
8、全等三角形有哪些性质 (1):全等三角形的对应边相等、对应角相等。 (2):全等三角形的周长相等、面积相等。 (3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。 3、全等三角形的判定 边边边:三边对应相等的两个三角形全等(可简写成“SSS”) 边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”) 角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”) 角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”) 斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”) 关注微信公众号“捷思课堂”获取更多学习资料!
9、第4页 4、证明两个三角形全等的基本思路: 二、角的平分线: 1、(性质)角的平分线上的点到角的两边的距离相等. 2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。 三、学习全等三角形应注意以下几个问题: (1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义; (2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上; (3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4):时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角” 1、全等三角形的概念 能够完全重合的两个图形叫做全等形。 能够完全重合的两
10、个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合 的边叫做对应边,互相重合的角叫做对应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端 点的两边所成的角。 2、全等三角形的表示和性质 全等用符号“”表示,读作“全等于”。如ABCDEF,读作“三角形 ABC 全等于三角形 DEF”。 注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。 3、三角形全等的判定 三角形全等的判定定理: (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(
11、可简写成“角边角”或“ASA”) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。 直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有 HL 定理(斜边、直角边定理):有斜边和一条直角边对应 相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”) 4、全等变换 只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: 关注微信公众号“捷思课堂”获取更多学习资料!第5页 (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折 180,这种变换叫做对称变换。 (3)旋转
12、变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。 第十二章轴对称 一、轴对称图形 1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条 直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。 2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。 这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点 3、轴对称图形和轴对称的区别与联系 4.轴对称的性质 关于某直线对称的两个图形是全等形。 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 轴
13、对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。 二、线段的垂直平分线 1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。 2.线段垂直平分线上的点与这条线段的两个端点的距离相等 3.与一条线段两个端点距离相等的点,在线段的垂直平分线上 三、用坐标表示轴对称小结: 在平面直角坐标系中,关于 x 轴对称的点横坐标相等,纵坐标互为相反数.关于 y 轴对称的点横坐标互为相反数,纵 坐标相等. 点(x, y)关于 x 轴对称的点的坐标为_. 点(x, y)关于 y 轴对称的点的坐标为_.
14、 2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等 关注微信公众号“捷思课堂”获取更多学习资料!第6页 四、(等腰三角形)知识点回顾 1.等腰三角形的性质 .等腰三角形的两个底角相等。(等边对等角) .等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一) 2、等腰三角形的判定: 如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边) 五、(等边三角形)知识点回顾 1.等边三角形的性质: 等边三角形的三个角都相等,并且每一个角都等于 600 。 2、等边三角形的判定: 三个角都相等的三角形是等边三角形。 有一个角是 600 的等腰三角形是
15、等边三角形。 3.在直角三角形中,如果一个锐角等于 300,那么它所对的直角边等于斜边的一半。 1、等腰三角形的性质 (1)等腰三角形的性质定理及推论: 定理:等腰三角形的两个底角相等(简称:等边对等角) 推论 1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底 边上的高重合。 推论 2:等边三角形的各个角都相等,并且每个角都等于 60。 (2)等腰三角形的其他性质: 等腰直角三角形的两个底角相等且等于 45 等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。 等腰三角形的三边关系:设腰长为 a,底边长为 b,则 2 b a 等
展开阅读全文