2021版 一次函数压轴题专题突破9:一次函数与菱形(含解析).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021版 一次函数压轴题专题突破9:一次函数与菱形(含解析).docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021版 一次函数压轴题专题突破9:一次函数与菱形含解析 2021 一次 函数 压轴 专题 突破 菱形 解析 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、一次函数压轴题之菱形一次函数压轴题之菱形 1如图,直线 l1:yx+b 分别与 x 轴、y 轴交于 A、B 两点,与直线 l2:ykx6 交于点 C(4,2) (1)求直线 l1和直线 l2的解析式; (2)点 E 是射线 BC 上一动点,其横坐标为 m,过点 E 作 EFy 轴,交直线 l2于点 F,若以 O、B、E、F 为 顶点的四边形是平行四边形,求 m 值; (3)若点 P 为 x 轴上一点,则在平面直角坐标系中是否存在一点 Q,使得以 P、Q、A、B 为顶点的四边形是 菱形?若存在,请直接写出点 Q 的坐标;若不存在,请说明理由 2如图 1,矩形 OABC 的边 OA、OC 分别在
2、x 轴、y 轴上,B 点坐标是(8,4) ,将AOC 沿对角线 AC 翻折得 ADC,AD 与 BC 相交于点 E (1)求证:CDEABE; (2)求 E 点坐标; (3) 如图 2, 若将ADC 沿直线 AC 平移得ADC (边 AC始终在直线 AC 上) , 是否存在四边形 DD CC 为菱形的情况?若存在,请直接写出点 C的坐标;若不存在,请说明理由 3如图,直线 l1:yx+b 分别与 x 轴、y 轴交于 A、B 两点,与直线 l2:ykx6 交于点 C(4,2) (1)求 A 点坐标及 k,b 的值; (2) 在直线 BC 上有一点 E, 过点 E 作 y 轴的平行线交直线 l2于
3、点 F, 设点 E 的横坐标为 m, 当 m 为何值时, 以 O、B、E、F 为顶点的四边形是平行四边形; (3) 若点 P 为 x 轴上一点, 在坐标系中是否存在一点 Q, 使得 P、 Q、 A、 B 四个点能构成一个菱形?若存在, 求出所有符合条件的 Q 的坐标;若不存在,请说明理由 4在平面直角坐标系中,BCOA,BC3,OA6,AB3 (1)直接写出点 B 的坐标; (2)已知 D、E 分别为线段 OC、OB 上的点,OD5,OE2BE,直线 DE 交 x 轴于点 F,求直线 DE 的解析式; (3)在(2)的条件下,点 M 是直线 DE 上的一点,在 x 轴上方是否存在另一个点 N,
4、使以 O、D、M、N 为顶 点的四边形是菱形?若存在,请直接写出点 N 的坐标;若不存在,请说明理由 5如图,在平面直角坐标系中,点 O 为坐标原点,直线 yx+b 与坐标轴交于 C,D 两点,直线 AB 与坐 标轴交于 A,B 两点,线段 OA,OC 的长是方程 x 23x+20 的两个根(OAOC) (1)求点 A,C 的坐标; (2)直线 AB 与直线 CD 交于点 E,若点 E 是线段 AB 的中点,求直线 AB 的解析式; (3)在(2)的条件下,点 M 在直线 CD 上,坐标平面内是否存在点 N,使以点 B,E,M,N 为顶点的四边形 是菱形?若存在,请直接写出满足条件的点 N 的
5、坐标;若不存在,请说明理由 6在平面直角坐标系中,直线 yx+b 分别与 x 轴、y 轴交于点 A、B,且点 A 坐标为(8,0) ,点 C 为 AB 中点 (1)请直接写出点 B 坐标( , ) (2)点 M 为 x 轴上的一个动点,过点 M 作 x 轴的垂线,分别与直线 AB、直线 OC 交于点 P、Q,设点 M 的横 坐标为 m,线段 PQ 的长度为 d,求 d 与 m 的函数关系式,并直接写出自变量 m 的取值范围 (3)在(2)条件下,当点 M 在线段 OA(点 M 不与 O、A 重合)上运动时,在坐标系内是否存在一点 N,使 得以 O、B、P、N 为顶点的四边形为菱形?若存在,求出
6、 N 点的坐标若不存在,请说明理由 7如图,平面直角坐标系中,矩形 OABC 的对角线 AC12,ACO30, (1)求 B、C 两点的坐标; (2)把矩形沿直线 DE 对折使点 C 落在点 A 处,DE 与 AC 相交于点 F,求直线 DE 的解析式; (3)若点 M 在直线 DE 上,平面内是否存在点 N,使以 O、F、M、N 为顶点的四边形是菱形?若存在,请直 接写出点 N 的坐标;若不存在,请说明理由 8如图,已知点 A(12,0) ,B(3,0) ,点 C 在 y 轴的正半轴上,且ACB90 (1)求点 C 的坐标; (2)求 RtACB 的角平分线 CD 所在直线 l 的解析式;
7、(3)在 l 上求出满足 SPBCSABC的点 P 的坐标; (4)已知点 M 在 l 上,在平面内是否存在点 N,使以 O、C、M、N 为顶点的四边形是菱形?若存在,请直接 写出点 N 的坐标;若不存在请说明理由 9如图,在平面直角坐标系中, OABC 的顶点 A 在 y 轴的正半轴上,顶点 B 在 x 轴的正半轴上,对角线 AC、OB 交于点 D,且 OA、OB 的长是方程 x 212x+320 的两根(OAOB) (1)求直线 AC 的函数解析式; (2)若点 P 从 A 点出发,以每秒 1 个单位的速度沿射线 AC 运动,连接 OP设OPD 的面积为 S,点 P 的运 动时间为 t 秒
8、,求 S 与 t 的函数关系式,并写出自变量的取值范围; (3)若点 M 是直线 AC 上一点,则在平面上是否存在点 N,使以 A、B、M、N 为顶点四边形为菱形?若存在, 请直接写出点 N 的坐标;若不存在,请说明理由 10 如图, 在平面直角坐标系中, 直角梯形 OABC 的边 OC、 OA 分别与 x 轴、 y 轴重合, ABOC, AOC90, BCO45,BC12,点 C 的坐标为(18,0) (1)求点 B 的坐标; (2)若直线 DE 交梯形对角线 BO 于点 D,交 y 正半轴于点 E,且 OE4,OD2BD,求直线 DE 的解析式; (3)若点 P 是(2)中直线 DE 上的
9、一个动点,在坐标平面内是否存在点 Q,使以 O、E、P、Q 为顶点的四边 形是菱形?若存在,请直接写出点 Q 的坐标;若不存在,请说明理由 11如图,在 RtOAB 中,A90,ABO30,OB,边 AB 的垂直平分线 CD 分别与 AB、x 轴、 y 轴交于点 C、G、D (1)求点 G 的坐标; (2)求直线 CD 的解析式; (3)在直线 CD 上和平面内是否分别存在点 Q、P,使得以 O、D、P、Q 为顶点的四边形是菱形?若存在,求 出点 Q 的坐标;若不存在,请说明理由 12已知直线 yx+4与 x 轴、y 轴分别交于 A、B 两点,ABC60,BC 与 x 轴交于点 C (1)试确
10、定直线 BC 的解析式 (2)若动点 P 从 A 点出发沿 AC 向点 C 运动(不与 A、C 重合) ,同时动点 Q 从 C 点出发沿 CBA 向点 A 运动 (不与 C、A 重合) ,动点 P 的运动速度是每秒 1 个单位长度,动点 Q 的运动速度是每秒 2 个单位长度设 APQ 的面积为 S,P 点的运动时间为 t 秒,求 S 与 t 的函数关系式,并写出自变量的取值范围 (3)在(2)的条件下,当APQ 的面积最大时,y 轴上有一点 M,平面内是否存在一点 N,使以 A、Q、M、 N 为顶点的四边形为菱形?若存在,请直接写出 N 点的坐标;若不存在,请说明理由 13如图,在平面直角坐标
11、系中,已知点 A 为第二象限内一点,过点 A 作 x 轴垂线交 x 轴于点 B,点 C 为 x 轴正半轴上一点,且 OB、OC 的长分别为方程 x 24x+30 的两根(OBOC) (1)求 B、C 两点的坐标; (2)作直线 AC,过点 C 作射线 CEAC 于 C,在射线 CE 上有一点 M(5,2) ,求直线 AC 的解析式; (3)在(2)的条件下,坐标平面内是否存在点 Q 和点 P(点 P 在直线 AC 上) ,使以 O、C、P、Q 为顶点的 四边形是菱形?若存在,请直接写出 Q 点坐标;若不存在,请说明理由 14如图 1,直线 yx+6 与 y 轴交于点 A,与 x 轴交于点 D,
12、直线 AB 交 x 轴于点 B,AOB 沿直线 AB 折叠,点 O 恰好落在直线 AD 上的点 C 处 (1)求 OB 的长; (2)如图 2,F,G 是直线 AB 上的两点,若DFG 是以 FG 为斜边的等腰直角三角形,求点 F 的坐标; (3)如图 3,点 P 是直线 AB 上一点,点 Q 是直线 AD 上一点,且 P,Q 均在第四象限,点 E 是 x 轴上一点, 若四边形 PQDE 为菱形,求点 E 的坐标 1 【解答】解: (1)将点 C 的坐标代入 l1、l2表达式得: 24+b,24k6, 解得:b4,k2, 故直线 l1和直线 l2的解析式分别为:yx+4,y2x6, 则点 A、
13、B 的坐标分别为(8,0) 、 (0,4) ; (2)设点 E(m,m+4) ,点 F(m,2m6) , 当以 O、B、E、F 为顶点的四边形是平行四边形时, 则 EFOB,即|m+42m+6|4, 解得:m或; (3)当 AB 是菱形的一条边时, 则 APAB4, 则点 P 的坐标为(8+4,0)或(84,0)或(8,0) , 则点 Q(4,4)或(4,4)或(0,4) ; 当 AB 是菱形的对角线时, 设点 P(m,0) ,点 Q(s,t) , 由中点公式得:8m+s,4t, 由菱形性质知:PAPB 得: (m8) 2m2+16, 联立并解得:t4,s5, 故点 Q(5,4) , 综上,点
14、 Q(4,4)或(4,4)或(5,4)或(0,4) 2 【解答】解: (1)证明:四边形 OABC 为矩形, ABOC,BAOC90, CDOCAB,DAOCB, 又CEDABE,CDEABE(AAS) , CEAE; (2)B(8,4) ,即 AB4,BC8 设 CEAEn,则 BE8n, 可得(8n) 2+42n2, 解得:n5, E(5,4) ; (3)设点 C 在水平方向上向左移动 m 个单位,则在垂直方向上向上移动了个单位, 则点 C坐标为(m,4m) , 则四边形 DDCC 为菱形, CC 2(m)2+( m) 2 m 2CD216, 解得:m, 故点 C的坐标为(,4+)或(,4
15、) 3 【解答】解: (1)将 C(4,2)代入 ykx6,yx+b 得:24k6,24+b,解得:k2,b4 直线 l1:yx+4,直线 l2:y2x6 在 yx+4 中,令 x0,得 y4,B(0,4) 令 y0,得 0 x+4,解得:x8,A(8,0) ; (2)设 E(m,m+4) ,则 F(m,2m6) , 如图 1,当 0m4 时,EF10, 四边形 OBEF 是平行四边形 OBEF 即 410,解得:m, 如图 2,当 m4 时, 四边形 OBFE 是平行四边形 OBFE,即 4m10,解得:m, m或 m; (3)存在如图 3, 当以 AB 为边时, 点 A(8,0) ,B(0
16、,4) AB4, 以 P、Q、A、B 为顶点的四边形是菱形 APAB4, P(84,0)或 P(8+4,0) , Q(4,4)或(4,4) , 当 Q 与 B 关于原点对称时,Q(0,4)也存在满足条件的菱形, 当以 AB 为对角线时, 设对角线的交点为 M,则 M(4,2) , 因此设 APBPx,则 OP8x, 在 RtBOP 中, 4 2+(8x)2x2, 解得:x5, P(3,0) ,则 Q(5,4) , 综上所述,符合条件的 Q 的坐标为:Q(4,4)或(4,4)或(5,4)或(0,4) 4 【解答】解: (1)如图 1,过 B 作 BGOA 于点 G, BC3,OA6, AGOAO
17、GOABC633, 在 RtABG 中,由勾股定理可得 AB 2AG2+BG2,即(3 ) 232+BG2,解得 BG6, OC6, B(3,6) ; (2)由 OD5 可知 D(0,5) , B(3,6) ,OE2BE, E(2,4) , 设直线 DE 的解析式是 ykx+b 把 D(0,5)E(2,4)代入得, 直线 DE 的解析式是 yx+5; (3)当 OD 为菱形的边时,则 MNOD5,且 MNOD, M 在直线 DE 上, 设 M(t,t+5) , 当点 N 在点 M 上方时,如图 2,则有 OMMN, OM 2t2+( t+5) 2, t 2+( t+5) 252,解得 t0 或
18、 t4, 当 t0 时,M 与 D 重合,舍去, M(4,3) , N(4,8) ; 当点 N 在点 M 下方时,如图 3,则有 MDOD5, t 2+( t+55) 252,解得 t2 或 t2, 当 t2时,N 点在 x 轴下方,不符合题意,舍去, M(2,+5) , N(2,) ; 当 OD 为对角线时,则 MN 垂直平分 OD, 点 M 在直线 y2.5 上, 在 yx+5 中,令 y2.5 可得 x5, M(5,2.5) , M、N 关于 y 轴对称, N(5,2.5) , 综上可知存在满足条件的点 N,其坐标为(4,8)或(5,2.5)或(2,) 5 【解答】解: (1)x 23x
19、+2(x1) (x2)0, x11,x22, OAOC, OA2,OC1, A(2,0) ,C(1,0) (2)将 C(1,0)代入 yx+b 中, 得:01+b,解得:b1, 直线 CD 的解析式为 yx+1 点 E 为线段 AB 的中点,A(2,0) ,B 的横坐标为 0, 点 E 的横坐标为1 点 E 为直线 CD 上一点, E(1,2) 设直线 AB 的解析式为 ykx+b,则有, 解得, 直线 AB 的解析式为 y2x+4 (3)假设存在,设点 M 的坐标为(m,m+1) , 以点 B,E,M,N 为顶点的四边形是菱形分两种情况(如图所示) : 以线段 BE 为边时,E(1,2) ,
20、A(2,0) ,E 为线段 AB 的中点, B(0,4) , BEAB 四边形 BEMN 为菱形, EMBE 或 BEBM 当 EMBE 时,有 EMBE, 解得:m1,m2, M(,2+)或(,2) , B(0,4) ,E(1,2) , N(,4+)或(,4) ; 当 BEBM 时,有 BMBE, 解得:m31(舍去) ,m42, M(2,3) , B(0,4) ,E(1,2) , N(3,1) ; 以线段 BE 为对角线时,MBME, , 解得:m3, M(,) , B(0,4) ,E(1,2) , N(01+,4+2) ,即( ,) 综上可得:坐标平面内存在点 N,使以点 B,E,M,N
展开阅读全文