高三三轮冲刺3复习-不等式与线性规划.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高三三轮冲刺3复习-不等式与线性规划.doc》由用户(secant)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三轮 冲刺 复习 不等式 线性规划 下载 _三轮冲刺_高考专区_数学_高中
- 资源描述:
-
1、. 不等式不等式与与线性规划线性规划 不等式的性 质 (1)abbcac?,; 两个实数的顺序关系: 0abab? 0abab? 0abab? ? (2)00abcacbcabcacbc?,;,; (3)abacbc? ?; (4)abcdacbd? ?,; 11 ab ab ?的充要条件是 0ab ?。 (5)00abcdacbd?,; (6) * 01 nn nn abnnabab? ?N,; 一元二次不 等式 解一元二次不等式实际上就是求出对应的一元二次方程的实数根(如果有实数根) ,再结合对应的函数的图 象确定其大于零或者小于零的区间,在含有字母参数的不等式中还要根据参数的不同取值确定
2、方程根的大小 以及函数图象的开口方向,从而确定不等式的解集 基本 不等式 2 ab ab ? ? (0,0ab?) 2abab?(,0a b ?) ; 2 () 2 ab ab ? ?(, a b?R) ; ba ab ? 2 ab 2 ba ? 2 22 ba? (,0a b ?) ; 22 2abab?。 二元一次不 等式组 二元一次不等式0AxByC?的解集是平面直角坐标系中表示0AxByC?某一侧所有点组成 的平面区域。二元一次不等式组的解集是指各个不等式解集所表示的平面区域的公共部分。 简单的 线性规划 基本 概念 约束条件 对变量, x y的制约条件。如果是, x y的一次式,则称线性约束条件 目标函数 求解的最优问题的表达式。如果是, x y的一次式,则称线性目标函数。 可行解 满足线性约束条件的解( , )x y叫可行解。 可行域 所有可行解组成的集合叫可行域。 最优解 使目标函数取得最大值或者最小值的可行解叫最优解。 线性规划 在线性约束条件下求线性目标函数的最大值或者最大值的问题。 问题 解法 不含 实际背景 第一步 画出可行域。 注意区域 边界的虚实。 第二步 根据目标函数几何意义确定最优解。 第三步 求出目标函数的最值。 含 实际背景 第一步 设置两个变量,建立约束条件和目标函数。 注意实际问题对变 量的限制。 第二步 同不含实际背景的解法步骤。
展开阅读全文