1、本章内容本章内容 3.1 静电场分析静电场分析 3.2 导电媒质中的恒定电场分析导电媒质中的恒定电场分析 3.3 恒定磁场分析恒定磁场分析 3.4 静态场的边值问题及解的惟一性定理静态场的边值问题及解的惟一性定理 3.5 镜像法镜像法 3.6 分离变量法分离变量法 静态电磁场:静态电磁场:场量不随时间变化,包括:场量不随时间变化,包括:静电场、恒定电场和恒定磁场静电场、恒定电场和恒定磁场 时变情况下,电场和磁场相互关联,构成统一的电磁场时变情况下,电场和磁场相互关联,构成统一的电磁场 静态情况下,电场和磁场由各自的源激发,且相互独立静态情况下,电场和磁场由各自的源激发,且相互独立 3.1 静电
2、场分析静电场分析 本节内容本节内容 3.1.1 静电场的基本方程和边界条件静电场的基本方程和边界条件 3.1.2 电位函数电位函数 2.边界条件边界条件0ED微分形式:微分形式:ED本构关系:本构关系:1.基本方程基本方程0)()(21n21nEEDDeeS0ddlESDCSq积分形式:积分形式:0)(0)(21n21nEEDDee02t1tn2n1EEDDS或或2t1tn2n1EEDD或或3.1.1 静电场的基本方程和边界条件静电场的基本方程和边界条件若分界面上不存在面电荷,即若分界面上不存在面电荷,即 ,则,则0S 在静电平衡的情况下,导体内部的电场为在静电平衡的情况下,导体内部的电场为0
3、,则导体表面的,则导体表面的边界条件为边界条件为 0nnEDeeS0tnEDS或或 导体表面的边界条件导体表面的边界条件0E由由即即静电场可以用一个标量函数的梯度来表示,静电场可以用一个标量函数的梯度来表示,标量函数标量函数 称为静称为静电场的标量电位或简称电位。电场的标量电位或简称电位。1.电位函数的定义电位函数的定义E3.1.2 电位函数电位函数2.电位的表达式电位的表达式对于连续的体分布电荷,由对于连续的体分布电荷,由同理得,面电荷的电位:同理得,面电荷的电位:1()()d4VrrVCR故得故得点电荷的电位:点电荷的电位:()4qrCR()1()d4lCrrlCRd)1)(41d)1()
4、(41d)(41)(3VRrVRrVRRrrEVVV3)1(RRR线电荷的电位:线电荷的电位:rrRCSRrrSSd)(41)(33.电位差电位差两端点乘两端点乘 ,则有,则有ldE将将d)ddd(ddyyyyxxllE上式两边从点上式两边从点P到点到点Q沿任意路径进行积分,得沿任意路径进行积分,得关于电位差的说明关于电位差的说明 P、Q 两点间的电位差等于电场力将单位正电荷从两点间的电位差等于电场力将单位正电荷从P点移至点移至Q 点点 所做的功,电场力使单位正电荷由高电位处移到低电位处。所做的功,电场力使单位正电荷由高电位处移到低电位处。电位差也称为电压,可用电位差也称为电压,可用U 表示。
5、表示。电位差有确定值,只与首尾两点位置有关,与积分路径无关。电位差有确定值,只与首尾两点位置有关,与积分路径无关。)()(ddQPlEQPQPP、Q 两点间的电位差两点间的电位差电场力做电场力做的功的功 静电位不惟一,可以相差一个常数,即静电位不惟一,可以相差一个常数,即)(CC选参考点选参考点令参考点电位为零令参考点电位为零电位确定值电位确定值(电位差电位差)两点间电位差有定值两点间电位差有定值 选择电位参考点的原则选择电位参考点的原则 应使电位表达式有意义。应使电位表达式有意义。应使电位表达式最简单。若电荷分布在有限区域,通常取无应使电位表达式最简单。若电荷分布在有限区域,通常取无 限远作
6、电位参考点。限远作电位参考点。同一个问题只能有一个参考点。同一个问题只能有一个参考点。4.电位参考点电位参考点 为使空间各点电位具有确定值,可以选定空间某一点作为参考为使空间各点电位具有确定值,可以选定空间某一点作为参考点,且令参考点的电位为零,由于空间各点与参考点的电位差为确点,且令参考点的电位为零,由于空间各点与参考点的电位差为确定值,所以该点的电位也就具有确定值,即定值,所以该点的电位也就具有确定值,即xyzL-L(,)z zddlzRz 解解 采用圆柱坐标系,令线电荷与采用圆柱坐标系,令线电荷与 z 轴相重合,中点位于坐轴相重合,中点位于坐标原点。由于轴对称性,电位与标原点。由于轴对称
7、性,电位与 无关。无关。在带电线上位于在带电线上位于 处的线元处的线元 ,它,它到点到点 的距离的距离 ,则则22()Rzzddlz(,)Pz 02201()d4()LlLrzzz2200ln()4LlLzzzz220220()()ln4()()lzLzLzLzL 例例 求长度为求长度为2L、电荷线密度为、电荷线密度为 的均匀带电线的电位。的均匀带电线的电位。0l在均匀介质中,有在均匀介质中,有5.电位的微分方程电位的微分方程在无源区域,在无源区域,0EED202标量泊松方程标量泊松方程拉普拉斯方程拉普拉斯方程6.静电位的边界条件静电位的边界条件 设设P1和和P2是介质分界面两侧紧贴界面的相邻
8、两点,其电位分是介质分界面两侧紧贴界面的相邻两点,其电位分别为别为1和和2。当两点间距离当两点间距离l0时时 导体表面上电位的边界条件:导体表面上电位的边界条件:0dlim21021PPlElSe)(21nDDD由由 和和12媒质媒质2媒质媒质121l2P1P 若介质分界面上无自由电荷,即若介质分界面上无自由电荷,即0Snn1122常数,常数,SnSnn112221 例例3.1.3 两块无限大接地导体平板分别置于两块无限大接地导体平板分别置于 x=0 和和 x=a 处,处,在两板之间的在两板之间的 x=b 处有一面密度为处有一面密度为 的均匀电荷分布,如图所的均匀电荷分布,如图所示。求两导体平
9、板之间的电位和电场。示。求两导体平板之间的电位和电场。0S 解解 在两块无限大接地导体平板之间,除在两块无限大接地导体平板之间,除 x=b 处有均匀面电处有均匀面电荷分布外,其余空间均无电荷分布,故电位函数满足一维拉普拉荷分布外,其余空间均无电荷分布,故电位函数满足一维拉普拉斯方程斯方程212d()0,(0)dxxbx222d()0,()dxbxax111222()()xC xDxC xD方程的解为方程的解为obaxy两块无限大平行板两块无限大平行板0S1()x2()x0110(),0SbaCDa 002200,SSbbCDa 010020()(),(0)()(),()SSabxxxbabxa
10、xbxaa 0110()()()SxabE xxea 1221122021000SDC aDC bDC bDCC 利用边界条件,有利用边界条件,有xb12()(),bb0210()()Sx bxxxx 处,处,最后得最后得0 x 处,处,1(0)0 x a2()0a 处,处,所以所以0220()()SxbE xxea由此解得由此解得3.2 导电媒质中的恒定电场分析导电媒质中的恒定电场分析 本节内容本节内容 3.2.1 恒定电场的基本方程和边界条件恒定电场的基本方程和边界条件 3.2.2 恒定电场与静电场的比拟恒定电场与静电场的比拟 由由 可知,导体中若存在恒定电流,则必有维持该电可知,导体中若
11、存在恒定电流,则必有维持该电流的电场,虽然导体中产生电场的电荷作定向运动,但导体中的流的电场,虽然导体中产生电场的电荷作定向运动,但导体中的电荷分布是一种不随时间变化的恒定分布,这种恒定分布电荷产电荷分布是一种不随时间变化的恒定分布,这种恒定分布电荷产生的电场称为恒定电场。生的电场称为恒定电场。恒定电场与静电场的重要区别:恒定电场与静电场的重要区别:(1 1)恒定电场可以存在于导体内部。)恒定电场可以存在于导体内部。(2 2)恒定电场中有电场能量的损耗)恒定电场中有电场能量的损耗,要维持导体中的恒定电要维持导体中的恒定电流,就必须有外加电源来不断补充被损耗的电场能量。流,就必须有外加电源来不断
12、补充被损耗的电场能量。恒定电场和静电场都是有源无旋场,具有相同的性质。恒定电场和静电场都是有源无旋场,具有相同的性质。3.2.1 恒定电场的基本方程和边界条件恒定电场的基本方程和边界条件JEEJ0d0dlESJCS00EJ1.基本方程基本方程 恒定电场的基本方程为恒定电场的基本方程为微分形式:微分形式:积分形式:积分形式:)(rJ 恒定电场的基本场矢量是电流密度恒定电场的基本场矢量是电流密度 和电场强度和电场强度)(rE 线性各向同性导电媒质的本构关系线性各向同性导电媒质的本构关系0)(EEJ 恒定电场的电位函数恒定电场的电位函数0E0 EE0 J由由0)(02若媒质是均匀的,则若媒质是均匀的
13、,则 均匀导电媒质中均匀导电媒质中没有体分布电荷没有体分布电荷2.恒定电场的边界条件恒定电场的边界条件0dlEC0dSJS0)(21nJJe0)(21nEEe 场矢量的边界条件场矢量的边界条件2nn1JJ即即2t1tEE即即媒质媒质2 2媒质媒质1 121212E1Ene场矢量的折射关系场矢量的折射关系212n21n12n2t1n1t21/tantanJJEEEE 电位的边界条件电位的边界条件nn221121,恒定电场同时存在于导体内部和外部,在导体表面上的电场恒定电场同时存在于导体内部和外部,在导体表面上的电场 既有法向分量又有切向分量,电场并不垂直于导体表面,因既有法向分量又有切向分量,电
14、场并不垂直于导体表面,因 而导体表面不是等位面;而导体表面不是等位面;说明说明:b11、a媒质媒质2 2媒质媒质1 12122E1E)(12媒质媒质2 2媒质媒质1 12012Ene1E)0(1 如如2 1、且、且 290,则则 10,即电场线近似垂直于与良导体表面。即电场线近似垂直于与良导体表面。此时,良导体表面可近似地看作为此时,良导体表面可近似地看作为 等位面;等位面;若媒质若媒质1为理想介质为理想介质,即即 10,则则 J1=0,故故J2n=0 且且 E2n=0,即导体,即导体 中的电流和电场与分界面平行中的电流和电场与分界面平行。3.2.2 恒定电场与静电场的比拟恒定电场与静电场的比
15、拟 如果两种场,在一定条件下,场方程有相同的形式,边界如果两种场,在一定条件下,场方程有相同的形式,边界形状相同,边界条件等效,则其解也必有相同的形式,求解这形状相同,边界条件等效,则其解也必有相同的形式,求解这两种场分布必然是同一个数学问题。只需求出一种场的解,就两种场分布必然是同一个数学问题。只需求出一种场的解,就可以用对应的物理量作替换而得到另一种场的解。这种求解场可以用对应的物理量作替换而得到另一种场的解。这种求解场的方法称为比拟法。的方法称为比拟法。D0U静电场静电场J0U恒定电场恒定电场恒定电场与静电场的比拟恒定电场与静电场的比拟基本方程基本方程ED,EEJ0202n2n1t2t1
16、 DDEEn2n1t2t1 JJEE静电场(静电场(区域)区域)00d,0dlESJCS0,0EJ,E0,0DEnn221121 ,nn221121 ,本构关系本构关系位函数位函数边界条件边界条件恒定电场(电源外)恒定电场(电源外)0d,0dlESDCS 例例3.2.1一个有两层介质的平行板电容器,其参数分别为一个有两层介质的平行板电容器,其参数分别为 1、1 和和 2、2,外加电压,外加电压U。求介质面上的自由电荷密度。求介质面上的自由电荷密度。解解:电流沿:电流沿z 方向。方向。1n2nJJ 由由1n2nSDD由由U1d2d11,22,zo12121 12212()ddUUUEdE dJ1
17、2121122,JJJJEE12JJJ1212()ddJU121212,SSDJDJ 上下21122121212112()SDDJUdd 介 例例3.2.2 填充有两层介质的同轴电缆,内导体半径为填充有两层介质的同轴电缆,内导体半径为a,外导,外导体半径为体半径为c,介质的分界面半径为,介质的分界面半径为b。两层介质的介电常数为。两层介质的介电常数为 1 和和 2、电导率为、电导率为 1 和和 2。设内导体的电压为。设内导体的电压为U0,外导体接地。求:,外导体接地。求:(1)两导体之间的电流密度和电场强度分布;()两导体之间的电流密度和电场强度分布;(2)介质分界面)介质分界面上的自由电荷面
18、密度。上的自由电荷面密度。J1212I外导体外导体内导体内导体介质介质2 2介质介质1abc11、22、0U (1)设同轴电缆中单位长度的径向电流为)设同轴电缆中单位长度的径向电流为I,则由则由 可得电流密度可得电流密度Sd,JSI()2IJeac111()2JIEeab 介质中的电场介质中的电场222()2JIEebc 解解 电流由内导体流向外导体,在分界面上只有法向分量,电流由内导体流向外导体,在分界面上只有法向分量,所以电流密度成轴对称分布。可先假设电流为所以电流密度成轴对称分布。可先假设电流为I,由求出电流密度由求出电流密度 的表达式,然后求出的表达式,然后求出 和和 ,再由,再由 确
19、定出电流确定出电流 I。J012ddbcabUEE1E2E12021()ln()ln()UJeacb ac b 20121()ln()ln()UEeabb ac b 10221()ln()ln()UEebcb ac b 故两种介质中的电流密度和电场强度分别为故两种介质中的电流密度和电场强度分别为120212ln()ln()UIb ac b 01212ddln()ln()22bcabIbIcUEEab由于由于于是得到于是得到12011121ln()ln()SaUeEab ac b 21022221ln()ln()ScUeEcb ac b 1211221221021()()ln()ln()SbeE
20、eEUbb ac b nSeD (2)由)由 可得,介质可得,介质1内表面的电荷面密度为内表面的电荷面密度为介质介质2外表面的电荷面密度为外表面的电荷面密度为两种介质分界面上的电荷面密度为两种介质分界面上的电荷面密度为J2112I本节内容本节内容 3.3.1 恒定磁场的基本方程和边界条件恒定磁场的基本方程和边界条件 3.3.2 恒定磁场的矢量磁位和标量磁位恒定磁场的矢量磁位和标量磁位 3.3 恒定磁场分析恒定磁场分析0HJB微分形式微分形式:0dddSSCSBSJlH1.基本方程基本方程BH2.边界条件边界条件本构关系:本构关系:SJHHeBBe)(0)(21n21nSJHHBBt2t12n1
21、n0或或若分界面上不存在面电流,即若分界面上不存在面电流,即JS0,则,则积分形式积分形式:0)(0)(21n21nHHeBBe或或002tt1n2n1HHBB3.3.1 恒定磁场的基本方程和边界条件恒定磁场的基本方程和边界条件 矢量磁位的定义矢量磁位的定义 磁矢位的任意性磁矢位的任意性 与电位一样,磁矢位也不是惟一确定的,它加上任意一个标与电位一样,磁矢位也不是惟一确定的,它加上任意一个标量量 的梯度以后,仍然表示同一个磁场,即的梯度以后,仍然表示同一个磁场,即由由AA 0BBA 即恒定磁场可以用一个矢量函数的旋度来表示。即恒定磁场可以用一个矢量函数的旋度来表示。磁矢位的任意性是因为只规定了
22、它的旋度,没有规定其散度磁矢位的任意性是因为只规定了它的旋度,没有规定其散度造成的。为了得到确定的造成的。为了得到确定的A,可以对,可以对A的散度加以限制,在恒定磁的散度加以限制,在恒定磁场中通常规定,并称为库仑规范。场中通常规定,并称为库仑规范。0A()AAA 1.恒定磁场的矢量磁位恒定磁场的矢量磁位矢量磁位或称磁矢位矢量磁位或称磁矢位 3.3.2 恒定磁场的矢量磁位和标量磁位恒定磁场的矢量磁位和标量磁位 磁矢位的微分方程磁矢位的微分方程在无源区:在无源区:AB0A 0J JA202 A矢量泊松方程矢量泊松方程矢量拉普拉斯方程矢量拉普拉斯方程AJ2()AAJ 磁矢位的表达式磁矢位的表达式3(
23、)1()d()()d44VVJ rRB rVJ rVRR 1()()d4VJ rVR()111()()()()()()J rJ rJ rJ rRRRR 31()RRR JB 磁矢位的边界条件磁矢位的边界条件(可以证明满足(可以证明满足 )0A对于面电流和细导线电流回路,磁矢位对于面电流和细导线电流回路,磁矢位分别为分别为 利用磁矢位计算磁通量:利用磁矢位计算磁通量:0A 12AAn12()SeHHJ/HAn121211()SeAAJ细线电流细线电流:CRlIrAd4)(面电流面电流:SSSRrJrAd)(4)(由此可得出由此可得出VVRrJrAd)(4)(dd0CSAlBSCSSlASASBd
24、dd0dSSA2t1tAA 2n1nAA2.恒定磁场的标量磁位恒定磁场的标量磁位 一般情况下,恒定磁场只能引入磁矢位来描述,但在无传导一般情况下,恒定磁场只能引入磁矢位来描述,但在无传导电流(电流(J0)的空间)的空间 中,则有中,则有即在无传导电流即在无传导电流(J0)的空间中,可以引入一个的空间中,可以引入一个标量位函数来标量位函数来描述磁场。描述磁场。标量磁位的引入标量磁位的引入0HmH 标量磁位或磁标位标量磁位或磁标位 磁标位的微分方程磁标位的微分方程0mBH 2m0 标量磁位的边界条件标量磁位的边界条件m1m212nn和和m1m23.4 静态场的边值问题及解的惟一性定理静态场的边值问
25、题及解的惟一性定理 本节内容本节内容 3.4.1 边值问题的类型边值问题的类型 3.4.2 惟一性定理惟一性定理边值问题边值问题:在给定的边界条件下,求解位函数的泊松方程或:在给定的边界条件下,求解位函数的泊松方程或 拉普拉斯方程拉普拉斯方程3.4.1 边值问题的类型边值问题的类型1|()Sf S已知场域边界面已知场域边界面S 上的位函数值,即上的位函数值,即222|()SfSn111|()Sf S、2|()SfSn第一类边值问题(或狄里赫利问题)第一类边值问题(或狄里赫利问题)已知场域边界面已知场域边界面S 上的位函数的法向导数值,即上的位函数的法向导数值,即 已知场域一部分边界面已知场域一
26、部分边界面S1 上的上的位函数值,而另一部分边界位函数值,而另一部分边界面面S2 上则已知上则已知位函数的法向导数值,即位函数的法向导数值,即第三类边值问题(或混合边值问题)第三类边值问题(或混合边值问题)第二类边值问题(或纽曼问题)第二类边值问题(或纽曼问题)SV有限值rrlim 自然边界条件自然边界条件(无界空间)(无界空间)衔接条件衔接条件不同媒质分界面上的边界条件,如不同媒质分界面上的边界条件,如121212,nn1212rS 在场域在场域V 的边界面的边界面S上给定上给定 或或 的的值,则泊松方程或拉普拉斯方程在场域值,则泊松方程或拉普拉斯方程在场域V 具具有惟一值。有惟一值。n3.
27、4.2 惟一性定理惟一性定理SV惟一性定理的重要意义惟一性定理的重要意义给出了静态场边值问题具有惟一解的条件给出了静态场边值问题具有惟一解的条件为静态场边值问题的各种求解方法提供了理论依据为静态场边值问题的各种求解方法提供了理论依据为求解结果的正确性提供了判据为求解结果的正确性提供了判据惟一性定理的表述惟一性定理的表述 本节内容本节内容 3.5.1 镜像法的基本原理镜像法的基本原理 3.5.2 接地导体平面的镜像接地导体平面的镜像 3.5 镜像法镜像法 当有电荷存在于导体或介质表面附近时,导体和介质表面当有电荷存在于导体或介质表面附近时,导体和介质表面会出现感应电荷或极化电荷,而感应电荷或极化
28、电荷将影响场会出现感应电荷或极化电荷,而感应电荷或极化电荷将影响场的分布。的分布。非均匀感应电荷产生的电位很难求非均匀感应电荷产生的电位很难求解,可以用等效电荷的电位替代解,可以用等效电荷的电位替代1.问题的提出问题的提出实例实例q q3.5.1 镜像法的基本原理镜像法的基本原理接地导体板附近有接地导体板附近有一个点电荷,如图所一个点电荷,如图所示。示。qq非均匀感应电荷非均匀感应电荷等效电荷等效电荷结论结论:所谓镜像法是将不均匀电荷分布的作用等效为点电荷:所谓镜像法是将不均匀电荷分布的作用等效为点电荷 或线电荷的作用。或线电荷的作用。问题问题:这种等效电荷是否存在?:这种等效电荷是否存在?这
29、种等效是否合理?这种等效是否合理?2.镜像法的原理镜像法的原理 用位于场域边界外虚设的较简单的镜像电荷分布来等效替代用位于场域边界外虚设的较简单的镜像电荷分布来等效替代该边界上未知的较为复杂的电荷分布,从而将原含该边界的非均该边界上未知的较为复杂的电荷分布,从而将原含该边界的非均匀媒质空间变换成无限大单一均匀媒质的空间,使分析计算过程匀媒质空间变换成无限大单一均匀媒质的空间,使分析计算过程得以明显简化的一种间接求解法。得以明显简化的一种间接求解法。在导体形状、几何尺寸、带电状况和媒质几何结构、特性不在导体形状、几何尺寸、带电状况和媒质几何结构、特性不变的前提条件下,根据惟一性定理,只要找出的解
30、答满足在同一变的前提条件下,根据惟一性定理,只要找出的解答满足在同一泛定方程下问题所给定的边界条件,那就是该问题的解答,并且泛定方程下问题所给定的边界条件,那就是该问题的解答,并且是惟一的解答。镜像法正是巧妙地应用了这一基本原理、面向多是惟一的解答。镜像法正是巧妙地应用了这一基本原理、面向多种典型结构的工程电磁场问题所构成的一种有效的解析求解法。种典型结构的工程电磁场问题所构成的一种有效的解析求解法。3.镜像法的理论基础镜像法的理论基础 解的解的惟一性定理惟一性定理 像电荷的个数、位置及其电量大小像电荷的个数、位置及其电量大小“三要素三要素”。4.镜像法应用的关键点镜像法应用的关键点5.确定镜
31、像电荷的两条原则确定镜像电荷的两条原则等效求解的等效求解的“有效场域有效场域”。镜像电荷的确定镜像电荷的确定像电荷必须位于所求解的场区域以外的空间中。像电荷必须位于所求解的场区域以外的空间中。像电荷的个数、位置及电荷量的大小以满足所求解的场像电荷的个数、位置及电荷量的大小以满足所求解的场 区域区域 的边界条件来确定。的边界条件来确定。1.点电荷对无限大接地导体平面的镜像点电荷对无限大接地导体平面的镜像,qq hh 11()04qzRR()00zRR满足原问题的边界条件,所得的结果是正确的。满足原问题的边界条件,所得的结果是正确的。3.5.2 接地导体平面的镜像接地导体平面的镜像镜像电荷镜像电荷
32、电位函数电位函数因因 z=0 时,时,有效区域有效区域RR q qhhq q qh上半空间上半空间(z0)的电位函数)的电位函数q qh22222211(,)4()()qx y zxyz hxyz h(0)z 2223 202()Szqhzxyh in2223 2d dd2()SSqhx yqSxyh 222 3 200d d2()qhqh 导体平面上的感应电荷密度为导体平面上的感应电荷密度为导体平面上的总感应电荷为导体平面上的总感应电荷为2.无限长线电荷对无限大接地导体平面的镜像无限长线电荷对无限大接地导体平面的镜像 2,0;0,0lx zhzz 镜像线电荷:镜像线电荷:ln(0)2lRzR
33、满足原问题的边界条件,满足原问题的边界条件,所得的解是正确的。所得的解是正确的。电位函数电位函数原问题原问题当当z=0 时,时,rr 0,llhh hhl 有效区域有效区域RR l3.点电荷对相交半无限大接地导体平面的镜像点电荷对相交半无限大接地导体平面的镜像 如图所示,两个相互垂直相连的半无限大接地导体平板,点如图所示,两个相互垂直相连的半无限大接地导体平板,点电荷电荷q 位于位于(d1,d2)处。处。显然,显然,q1 对平面对平面 2 以及以及 q2 对平对平面面 1 均不能满足边界条件。均不能满足边界条件。1231111()4qRRRR对于平面对于平面1,有镜像电荷,有镜像电荷q1=q,
34、位于,位于(d1,d2)对于平面对于平面2,有镜像电荷,有镜像电荷q2=q,位于,位于(d1,d2)只有在只有在(d1,d2)处处再设置一再设置一镜像电荷镜像电荷q3=q,所有边界条件才能,所有边界条件才能得到满足。得到满足。电位函数电位函数 d11qd22RR1R2R3q1d1d2d2q2d1q3d2d1 例例3.5.1 一个点电荷一个点电荷q与无限大导体平面距离为与无限大导体平面距离为d,如果把它,如果把它移至无穷远处,需要做多少功?移至无穷远处,需要做多少功?解解:移动电荷:移动电荷q时,外力需要克服电时,外力需要克服电场力做功,而电荷场力做功,而电荷q受的电场力来源于导受的电场力来源于
35、导体板上的感应电荷。可以先求电荷体板上的感应电荷。可以先求电荷q 移至移至无穷远时电场力所做的功。无穷远时电场力所做的功。20()4(2)xqE xexe22200()d1d4(2)16ddWqE xxqqxxd 2oe016qWWd qqx =0d-d 由镜像法,感应电荷可以用像电荷由镜像法,感应电荷可以用像电荷 替代。当电荷替代。当电荷q 移移至至x时,像电荷时,像电荷 应位于应位于x,则,则像电荷产生的电场强度像电荷产生的电场强度qq q3.6 分离变量法分离变量法 本节内容本节内容 3.6.1 分离变量法解题的基本原理分离变量法解题的基本原理 3.6.2 直角坐标系中的分离变量法直角坐
36、标系中的分离变量法 将偏微分方程中含有将偏微分方程中含有n个自变量的待求函数表示成个自变量的待求函数表示成n个各自只个各自只含一个变量的函数的乘积,把偏微分方程分解成含一个变量的函数的乘积,把偏微分方程分解成n个常微分方程,个常微分方程,求出各常微分方程的通解后,把它们线性叠加起来,得到级数形求出各常微分方程的通解后,把它们线性叠加起来,得到级数形式解,并利用给定的边界条件确定待定常数。式解,并利用给定的边界条件确定待定常数。分离变量法是求解边值问题的一种经典方法分离变量法是求解边值问题的一种经典方法分离变量法的理论依据是惟一性定理分离变量法的理论依据是惟一性定理分离变量法解题的基本思路:分离
37、变量法解题的基本思路:3.6.1 分离变量法解题的基本原理分离变量法解题的基本原理在直角坐标系中,若位函数与在直角坐标系中,若位函数与z 无关,则拉普拉斯方程为无关,则拉普拉斯方程为02222 yx3.6.2 直角坐标系中的分离变量法直角坐标系中的分离变量法22221d()1d()()d()dX xY yX xxY yy 将将 (x,y)表示为两个一维函数表示为两个一维函数 X(x)和和Y(y)的乘积,即的乘积,即(,)()()x yX x Y y2222d()d()()()0ddX xY yY yX xxy将其代入拉普拉斯方程,得将其代入拉普拉斯方程,得再除以再除以 X(x)Y(y),有,有
38、分离常数分离常数222d()()0dX xk X xx222d()()0dY yk Y yy 若取若取k2,则有,则有000()()Y yY yC yD()()sinh()cosh()nnnnnY yYyCk yDk ysin()cos()sinh()cosh()nnnnnnnnAk xBk xCk yDk y()sin()cos()nnnnX xAk xBk x当当0nkk(,)(,)()()nnnx yx yXx Y x0000000(,)(,)()()()()x yx yXx Y yA xBC yD当当0k 000()()X xXxA xB00001(,)()()sin()cos()sinh()cosh()nnnnnnnnnx yA xBC yDAk xBk xCk yDk y将所有可能的将所有可能的 (x,y)线性线性叠加起来,则得到位函数的通解,即叠加起来,则得到位函数的通解,即 若取若取k2,同理可得到,同理可得到00001(,)()()sinh()cosh()sin()cos()nnnnnnnnnx yA xBC yDAk xBk xCk yDk y通解中的分离常数和待定系数由给定的边界条件确定。通解中的分离常数和待定系数由给定的边界条件确定。