1、 1 / 5 第第 2626 章章 反比例函数反比例函数 26261 11 1 反比例函数的意义反比例函数的意义 【学习目标学习目标】 1、 经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的 概念。 2、 理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反 比例函数关系式 3、 让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际 问题的习惯,体会数学在解决实际问题中的作用 【学习重点】【学习重点】理解反比例函数的意义,确定反比例函数的解析式 【学习难点】【学习难点】反比例函数的解析式的确定 【学法指导学法指导】自主、合作、探究 教 学 互
2、 动 设 计 方法 导引 【自主学习,基础过关自主学习,基础过关】 一、自主学习:一、自主学习: (一)复习巩固(一)复习巩固 1.在一个变化的过程中,如果有两个变量 x 和 y,当 x 在其取值范围内任意取一 个值时, y ,则称 x 为 ,y 叫 x 的 . 2.一次函数的解析式是: ;当 时,称为正比例函数. 3.一条直线经过点(2,3) 、 (4,7) ,求该直线的解析式. 以上这种求函数解析式的方法叫: . (二)自主探究(二)自主探究 提出问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示? (1)京沪线铁路全程为 1463km,乘坐某次列车所用时间 t(单位:h)随该列车
3、平 均速度 v(单位:km/h)的变化而变化; (2)某住宅小区要种植一个面积为 1000m 2的矩形草坪,草坪的长为 y 随宽 x 的变 化; (3)已知北京市的总面积为 1.6810 4平方千米,人均占有土地面积 S(单位: 平方千米/人)随全市人口 n(单位:人)的变化而变化. 1、 上面问题中, 自变量与因变量分别是什么?三个问题的函数表达式分别是什么? (1) (2) (3) 2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗? (三)归纳总结:(三)归纳总结: 1、三个函数表达式: v t 1262 、 x y 1000 、S n 4 1068. 1 有什么共同特征?你能 用
4、一个一般形式来表示吗? 学 生 自 主回顾 学 生 独 立完成, 并展示 2 / 5 2、对于函数关系式 x y 1000 ,完成下表: x 10 20 30 40 50 80 100 x y 1000 当x越来越大时y怎样变化?这说明x与y具备怎样的关系? 3、类比一次函数的概念给上述新的函数下一个恰当的定义 讨论:讨论: 1、反比例函数 x k y 中自变量x在分式的什么位置?自变量的取值范围是什么? 2、你能再举出两个反比例函数关系的实例吗?写出函数表达式,与同伴进行交流。 (四)自我尝试:(四)自我尝试: 例例 1 1 下列哪些式子表示y是关于x的反比例函数?每一个反比例函数中相应的k
5、值 是多少? xy4; x y 5 ;16 xy;3 x y ;123xy x y 3 2 ; xy 变式训练 (1)关系式 xy+4=0 中 y 是 x 的反比例函数吗?若是,比例系数 k 等于多少?若不是, 请说明理由。 2、 在下列函数中,y 是 x 的反比例函数的是( ) A、 5 8 x y B、7 3 x y C、5xy D、 2 2 x y 3、 已知函数 7 m xy是正比例函数,则 m = 已知函数 7 3 m xy是反比例函数,则 m = 例例 2 2: (课本 P3 例 1)已知y是x的反比例函数,当2x时,6y 写出y与x的函数关系式。 求当4x时,y的值 学 生 活
6、动, 总结 归 纳 反 比 例 函 数概念 学 生 独 立完成, 然 后 分 小 组 展 示, 教师 点拨 3 / 5 变式训练 1、已知 y 是 x 的反比例函数,并且当 x=3 时,y=-8。 (1)写出 y 与 x 之间的函数关系式。 (2)求 y=2 时 x 的值。 2、y 是 x 的反比例函数,下表给出了 x 与 y 的一些值: x -2 -1 2 1 2 1 1 y 3 2 2 -1 (1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表。 二、课堂检测二、课堂检测 1、当 m = ,函数 2 3 )2( m xmy 是反比例函数。 2、若 y 与 x-2 成反比例,且当
7、 x=-1 时,y=3,则 (1)求 y 与 x 之间的函数关系式。 (2)求当 x=5 时,y 的值 3已知函数 yy1y2,y1与 x1 成正比例,y2与 x 成反比例,且当 x1 时,y0; 当 x4 时,y9,求当 x1 时 y 的值 通 过 当 堂检测, 找 到 学 生 自 己 当 堂 的 问题, 并 用 两 种 颜 色 的 笔 做 好 修改, 注 释 和 笔 记等 4 / 5 小组分组合作探究,释疑解惑小组分组合作探究,释疑解惑 、老师把“课前预习导学案”答案和步骤过程展示出来。 、小组成员之间相互合作探究学生课前预习导学案中的问题和预习中的疑惑 (学生的疑惑中没有提到老师认为需讲
8、解的内容时,需老师补充提问,小组讨论后, 同学作答) 三、课外训练三、课外训练 1、若 y 是 x-1 的反比例函数,则 x 的取值范围是 2、若 y= 1 1 n x 是 y 关于 x 的反比例函数关系式,则 n 是 3、把 xy=-1 化为 y= k x 的形式,其中 k= 4、苹果每千克 x 元,花 10 元钱可买 y 千克的苹果,则 y 与 x 之间的函数关系式为 5已知 y 与 x 成反比例,且当 x2 时,y3,则 y 与 x 之间的函数关系式 是 ,当 x3 时,y 6、当 m 时,关于 x 的函数 2 2 ) 1( m xmy是反比例函数? 7.如果 y 与 x 成正比例,z
9、与 x 成反比例,那么 y 与 x 之间的函数关系是 ( ) A 正比例关系 B 反比例关系 C 一次函数关系 D 不确定 8、在下列函数中,y 是 x 的反比例函数的是( ) A、 B C、xy=5 D、 9、已知 y 是 x的反比例函数,并且当 x=3 时,y=4。 (1)写出 y 与 x 之间的函数关系式。 (2)求 x=1.5 时 y 的值。 【学生总结学生总结】 1、老师学生一起把课堂检测的问题结论,及步骤过程交流讨论清楚 2、学生通过当堂检测,找到自己当堂的问题,并用两种颜色的笔做好修改,注释和 笔记等 3、学生自主查看翻阅资料,复习总结以及相互讨论不理解或者更深层次的数学问题。 【总结提炼,知识升华总结提炼,知识升华】 1、本节课学习的知识点 2、本节课学习的方法和数学思想 5 8 x y7 3 x y 2 2 x y 5 / 5 【课后训练,巩固拓展课后训练,巩固拓展】 教材习题 26.1 P8 1、2、4、6、7 及练习册 【教学反思教学反思】