欢迎来到163文库! | 帮助中心 精品课件PPT、教案、教学设计、试题试卷、教学素材分享与下载!
163文库
全部分类
  • 办公、行业>
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 中职>
  • 大学>
  • 各类题库>
  • ImageVerifierCode 换一换
    首页 163文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2020届浙江省舟山市中考数学试卷含答案.doc

    • 文档编号:653954       资源大小:646.50KB        全文页数:30页
    • 资源格式: DOC        下载积分:2文币     交易提醒:下载本文档,2文币将自动转入上传用户(副主任)的账号。
    微信登录下载
    快捷注册下载 游客一键下载
    账号登录下载
    二维码
    微信扫一扫登录
    下载资源需要2文币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    优惠套餐(点此详情)
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、试题类文档,标题没说有答案的,则无答案。带答案试题资料的主观题可能无答案。PPT文档的音视频可能无法播放。请谨慎下单,否则不予退换。
    3、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者搜狗浏览器、谷歌浏览器下载即可。。

    2020届浙江省舟山市中考数学试卷含答案.doc

    1、 第 1 页(共 30 页) 2020 年浙江省舟山市中考数学试卷年浙江省舟山市中考数学试卷 一、选择题(本题有一、选择题(本题有 10 小题,每题小题,每题 3 分,共分,共 30 分请选出各题中唯一的正确选项,不选、多选、错选,分请选出各题中唯一的正确选项,不选、多选、错选, 均不得分)均不得分) 12020 年 3 月 9 日,中国第 54 颗北斗导航卫星成功发射,其轨道高度约为 36000000m数 36000000 用 科学记数法表示为( ) A0.3610 8 B3610 7 C3.610 8 D3.610 7 2如图是由四个相同的小正方体组成的立体图形,它的主视图为( ) A B

    2、 C D 3已知样本数据 2,3,5,3,7,下列说法不正确的是( ) A平均数是 4 B众数是 3 C中位数是 5 D方差是 3.2 4一次函数 y2x1 的图象大致是( ) AB C D 5如图,在直角坐标系中,OAB 的顶点为 O(0,0) ,A(4,3) ,B(3,0) 以点 O 为位似中心,在第 三象限内作与OAB 的位似比为的位似图形OCD,则点 C 坐标( ) A (1,1) B (,1) C (1,) D (2,1) 6不等式 3(1x)24x 的解在数轴上表示正确的是( ) AB C D 7如图,正三角形 ABC 的边长为 3,将ABC 绕它的外心 O 逆时针旋转 60得到A

    3、BC,则它们重叠部 第 2 页(共 30 页) 分的面积是( ) A2 B C D 8用加减消元法解二元一次方程组时,下列方法中无法消元的是( ) A2 B(3) C(2) D3 9如图,在等腰ABC 中,ABAC2,BC8,按下列步骤作图: 以点 A 为圆心,适当的长度为半径作弧,分别交 AB,AC 于点 E,F,再分别以点 E,F 为圆心,大于 EF 的长为半径作弧相交于点 H,作射线 AH; 分别以点 A,B 为圆心,大于AB 的长为半径作弧相交于点 M,N,作直线 MN,交射线 AH 于点 O; 以点 O 为圆心,线段 OA 长为半径作圆 则O 的半径为( ) A2 B10 C4 D5

    4、 10已知二次函数 yx 2,当 axb 时 myn,则下列说法正确的是( ) A当 nm1 时,ba 有最小值 B当 nm1 时,ba 有最大值 C当 ba1 时,nm 无最小值 D当 ba1 时,nm 有最大值 二、填空题(本题有二、填空题(本题有 6 小题,每题小题,每题 4 分,共分,共 24 分)分) 第 3 页(共 30 页) 11分解因式:x 29 12 (4 分)如图,ABCD 的对角线 AC,BD 相交于点 O,请添加一个条件: ,使ABCD 是菱形 13一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率 是 14如图,在半径为的圆形纸片中

    5、,剪一个圆心角为 90的最大扇形(阴影部分) ,则这个扇形的面积 为 ;若将此扇形围成一个无底的圆锥(不计接头) ,则圆锥底面半径为 15数学家斐波那契编写的算经中有如下问题:一组人平分 10 元钱,每人分得若干;若再加上 6 人, 平分 40 元钱,则第二次每人所得与第一次相同,求第一次分钱的人数设第一次分钱的人数为 x 人, 则可列方程 16如图,有一张矩形纸条 ABCD,AB5cm,BC2cm,点 M,N 分别在边 AB,CD 上,CN1cm现将 四边形 BCNM 沿 MN 折叠,使点 B,C 分别落在点 B,C上当点 B恰好落在边 CD 上时,线段 BM 的长 为 cm;在点 M 从点

    6、 A 运动到点 B 的过程中,若边 MB与边 CD 交于点 E,则点 E 相应运动的路 径长为 cm 第 4 页(共 30 页) 三、解答题(本题有三、解答题(本题有 8 小题,第小题,第 1719 题每题题每题 6 分,分,第第 20、21 题每题题每题 8 分,第分,第 22、23 题每题题每题 10 分,第分,第 24 题题 12 分,共分,共 66 分)分) 17 (6 分) (1)计算: (2020) 0 |3|; (2)化简: (a2) (a2)a(a1) 18 (6 分) 比较 x 21 与 2x 的大小 (1)尝试(用“” , “”或“”填空) : 当 x1 时,x 21 2x

    7、; 当 x0 时,x 21 2x; 当 x2 时,x 21 2x (2)归纳:若 x 取任意实数,x 21 与 2x 有怎样的大小关系?试说明理由 19 (6 分) 已知:如图,在OAB 中,OAOB,O 与 AB 相切于点 C求证:ACBC小明同学的证明过程如下 框: 证明:连结 OC, OAOB, AB, 又OCOC, OACOBC, ACBC 小明的证法是否正确?若正确,请在框内打“” ;若错误,请写出你的证明过程 第 5 页(共 30 页) 20 (8 分) 经过实验获得两个变量 x(x0) ,y(y0)的一组对应值如下表 x 1 2 3 4 5 6 y 6 2.9 2 1.5 1.2

    8、 1 (1)请画出相应函数的图象,并求出函数表达式 (2)点 A(x1,y1) ,B(x2,y2)在此函数图象上若 x1x2,则 y1,y2有怎样的大小关系?请说明理由 21 (8 分) 小吴家准备购买一台电视机,小吴将收集到的某地区 A、B、C 三种品牌电视机销售情况的有关数据统计 如下: 根据上述三个统计图,请解答: (1)20142019 年三种品牌电视机销售总量最多的是 品牌,月平均销售量最稳定的是 品牌 (2)2019 年其他品牌的电视机年销售总量是多少万台? 第 6 页(共 30 页) (3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由 22 (10 分) 为了测量一

    9、条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点 A 处测得 河北岸的树 H 恰好在 A 的正北方向测量方案与数据如下表: 课题 测量河流宽度 测量工具 测量角度的仪器,皮尺等 测量小组 第一小组 第二小组 第三小组 测量方案示意图 说明 点 B,C 在点 A 的正东方向 点 B,D 在点 A 的正东 方向 点B在点A的正东方向, 点C在点A的正西方向 测量数据 BC60m, ABH70, ACH35 BD20m, ABH70, BCD35 BC101m, ABH70, ACH35 (1)哪个小组的数据无法计算出河宽? (2) 请选择其中一个方案及其数据求出河宽 (精确

    10、到 0.1m) (参考数据: sin700.94, sin350.57, tan702.75,tan350.70) 23 (10 分) 在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 ABC 和 DEF 拼在一起,使点 A 与点 F 重 合,点 C 与点 D 重合(如图 1) ,其中ACBDFE90,BCEF3cm,ACDF4cm,并进行如 下研究活动 第 7 页(共 30 页) 活动一:将图 1 中的纸片 DEF 沿 AC 方向平移,连结 AE,BD(如图 2) ,当点 F 与点 C 重合时停止平移 【思考】图 2 中的四边形 ABDE 是平行四边形吗?请说明理由 【发现】当纸片 D

    11、EF 平移到某一位置时,小兵发现四边形 ABDE 为矩形(如图 3) 求 AF 的长 活动二:在图 3 中, 取 AD 的中点 O, 再将纸片 DEF 绕点 O 顺时针方向旋转 度(090) , 连结 OB, OE(如图 4) 【探究】当 EF 平分AEO 时,探究 OF 与 BD 的数量关系,并说明理由 24 (12 分) 在篮球比赛中,东东投出的球在点 A 处反弹,反弹后球运动的路线为抛物线的一部分(如图 1 所示建立 直角坐标系) ,抛物线顶点为点 B (1)求该抛物线的函数表达式 (2)当球运动到点 C 时被东东抢到,CDx 轴于点 D,CD2.6m 求 OD 的长 东东抢到球后,因遭

    12、对方防守无法投篮,他在点 D 处垂直起跳传球,想将球沿直线快速传给队友华 华,目标为华华的接球点 E(4,1.3) 东东起跳后所持球离地面高度 h1(m) (传球前)与东东起跳后 时间 t(s)满足函数关系式 h12(t0.5) 22.7(0t1) ;小戴在点 F(1.5,0)处拦截,他比东 东晚 0.3s 垂直起跳,其拦截高度 h2(m)与东东起跳后时间 t(s)的函数关系如图 2 所示(其中两条抛 物线的形状相同) 东东的直线传球能否越过小戴的拦截传到点 E?若能,东东应在起跳后什么时间范 围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计) 第 8 页(共 30 页) 第 9

    13、 页(共 30 页) 2020 年浙江省舟山市中考数学试卷年浙江省舟山市中考数学试卷 参考答案与试题解析参考答案与试题解析 一、选择题(本题有一、选择题(本题有 10 小题,每题小题,每题 3 分,共分,共 30 分请选出各题中唯一的正确选项,不选、多选、错选,分请选出各题中唯一的正确选项,不选、多选、错选, 均不得分)均不得分) 1(3 分) 2020 年 3 月 9 日, 中国第 54 颗北斗导航卫星成功发射, 其轨道高度约为 36000000m 数 36000000 用科学记数法表示为( ) A0.3610 8 B3610 7 C3.610 8 D3.610 7 【分析】科学记数法的表示

    14、形式为 a10n的形式,其中 1|a|10,n 为整数确定 n 的值时,要看把 原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同 【解答】解:36 000 0003.610 7, 故选:D 【点评】此题考查科学记数法的表示方法,表示时关键要正确确定 a 的值以及 n 的值 2 (3 分)如图是由四个相同的小正方体组成的立体图形,它的主视图为( ) A B C D 【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中 【解答】解:从正面看易得第一列有 2 个正方形,第二列底层有 1 个正方形 故选:A 【点评】本题考查了三视图的知识,主视图是从物体的

    15、正面看得到的视图 3 (3 分)已知样本数据 2,3,5,3,7,下列说法不正确的是( ) A平均数是 4 B众数是 3 C中位数是 5 D方差是 3.2 【分析】根据众数、中位数、平均数、方差的定义和计算公式分别进行分析即可 【解答】解:样本数据 2,3,5,3,7 中平均数是 4,中位数是 3,众数是 3,方差是 S 2 (24) 2 (34) 2(54)2(34)2(74)23.2 故选:C 第 10 页(共 30 页) 【点评】本题考查方差、众数、中位数、平均数关键是掌握各种数的定义,熟练记住方差公式是解题 的关键 4 (3 分)一次函数 y2x1 的图象大致是( ) A B C D

    16、【分析】根据一次函数的性质,判断出 k 和 b 的符号即可解答 【解答】解:由题意知,k20,b10 时,函数图象经过一、三、四象限 故选:B 【点评】本题考查了一次函数 ykxb 图象所过象限与 k,b 的关系,当 k0,b0 时,函数图象经 过一、三、四象限 5 (3 分)如图,在直角坐标系中,OAB 的顶点为 O(0,0) ,A(4,3) ,B(3,0) 以点 O 为位似中 心,在第三象限内作与OAB 的位似比为的位似图形OCD,则点 C 坐标( ) A (1,1) B (,1) C (1,) D (2,1) 【分析】根据关于以原点为位似中心的对应点的坐标的关系,把 A 点的横纵坐标都乘

    17、以即可 【解答】解:以点 O 为位似中心,位似比为, 而 A (4,3) , A 点的对应点 C 的坐标为(,1) 第 11 页(共 30 页) 故选:B 【点评】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为 k, 那么位似图形对应点的坐标的比等于 k 或k 6 (3 分)不等式 3(1x)24x 的解在数轴上表示正确的是( ) A B C D 【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得不等式的解集,继而可得答 案 【解答】解:去括号,得:33x24x, 移项,得:3x4x23, 合并,得:x1, 故选:A 【点评】本题主要考查解一元

    18、一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要 注意不等式两边都乘以或除以同一个负数不等号方向要改变 7 (3 分)如图,正三角形 ABC 的边长为 3,将ABC 绕它的外心 O 逆时针旋转 60得到ABC,则它们 重叠部分的面积是( ) A2 B C D 【分析】根据重合部分是正六边形,连接 O 和正六边形的各个顶点,所得的三角形都是全等的等边三 角形,据此即可求解 【解答】解:作 AMBC 于 M,如图: 重合部分是正六边形,连接 O 和正六边形的各个顶点,所得的三角形都是全等的等边三角形 ABC 是等边三角形,AMBC, 第 12 页(共 30 页) ABBC3,BMC

    19、MBC,BAM30, AMBM, ABC 的面积BCAM3, 重叠部分的面积ABC 的面积; 故选:C 【点评】本题考查了三角形的外心、等边三角形的性质以及旋转的性质,理解连接 O 和正六边形的各 个顶点,所得的三角形都为全等的等边三角形是关键 8 (3 分)用加减消元法解二元一次方程组时,下列方法中无法消元的是( ) A2 B(3) C(2) D3 【分析】方程组利用加减消元法变形即可 【解答】解:A、2可以消元 x,不符合题意; B、(3)可以消元 y,不符合题意; C、(2)可以消元 x,不符合题意; D、3 无法消元,符合题意 故选:D 【点评】此题考查了解二元一次方程组,熟练掌握加减

    20、消元法是解本题的关键 9 (3 分)如图,在等腰ABC 中,ABAC2,BC8,按下列步骤作图: 以点 A 为圆心,适当的长度为半径作弧,分别交 AB,AC 于点 E,F,再分别以点 E,F 为圆心,大于 EF 的长为半径作弧相交于点 H,作射线 AH; 分别以点 A,B 为圆心,大于AB 的长为半径作弧相交于点 M,N,作直线 MN,交射线 AH 于点 O; 以点 O 为圆心,线段 OA 长为半径作圆 第 13 页(共 30 页) 则O 的半径为( ) A2 B10 C4 D5 【分析】如图,设 OA 交 BC 于 T解直角三角形求出 AT,再在 RtOCT 中,利用勾股定理构建方程即 可解

    21、决问题 【解答】解:如图,设 OA 交 BC 于 T ABAC2,AO 平分BAC, AOBC,BTTC4, AT2, 在 RtOCT 中,则有 r 2(r2)242, 解得 r5, 故选:D 【点评】本题考查作图复杂作图,等腰三角形的性质,垂径定理等知识,解题的关键是理解题意,灵 活运用所学知识解决问题 10 (3 分)已知二次函数 yx 2,当 axb 时 myn,则下列说法正确的是( ) A当 nm1 时,ba 有最小值 B当 nm1 时,ba 有最大值 C当 ba1 时,nm 无最小值 D当 ba1 时,nm 有最大值 第 14 页(共 30 页) 【分析】当 ba1 时,先判断出四边

    22、形 BCDE 是矩形,得出 BCDEba1,CDBEm,进 而得出 ACnm,即 tannm,再判断出 0ABC90,即可得出 nm 的范围; 当 nm1 时,同的方法得出 NHPQba,HQPNm,进而得出 MHnm1,而 tan MHN,再判断出 45MNH90,即可得出结论 【解答】解:当 ba1 时,如图 1, 过点 B 作 BCAD 于 C, BCD90, ADEBED90, ADDBCDBED90, 四边形 BCDE 是矩形, BCDEba1,CDBEm, ACADCDnm, 在 RtACB 中,tanABCnm, 点 A,B 在抛物线 yx 2上, 0ABC90, tanABC0

    23、, nm0, 即 nm 无最大值,有最小值,最小值为 0,故选项 C,D 都错误; 当 nm1 时,如图 2, 过点 N 作 NHMQ 于 H, 同的方法得,NHPQba,HQPNm, MHMQHQnm1, 在 RtMHQ 中,tanMNH, 点 M,N 在抛物线 yx 2上, m0, 当 m0 时,n1, 点 N(0,0) ,M(1,1) , NH1, 第 15 页(共 30 页) 此时,MNH45, 45MNH90, tanMNH1, 1, ba 无最小值,有最大值,最大值为 1,故选项 A 错误; 故选:B 【点评】此题主要考查了二次函数的性质,矩形的判定和性质,锐角三角函数,确定出MN

    24、H 的范围 是解本题的关键 二、填空题(本题有二、填空题(本题有 6 小题,每题小题,每题 4 分,共分,共 24 分)分) 11 (4 分)分解因式:x 29 (x3) (x3) 【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式 【解答】解:x 29(x3) (x3) 故答案为: (x3) (x3) 【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异 第 16 页(共 30 页) 号、平方形式”是避免错用平方差公式的有效方法 12 (4 分)如图,ABCD 的对角线 AC,BD 相交于点 O,请添加一个条件: ADDC(答案不唯一) ,

    25、使ABCD 是菱形 【分析】根据菱形的定义得出答案即可 【解答】解:邻边相等的平行四边形是菱形, 平行四边形 ABCD 的对角线 AC、BD 相交于点 O,试添加一个条件:可以为:ADDC; 故答案为:ADDC(答案不唯一) 【点评】此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键 13 (4 分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的 概率是 【分析】直接利用概率公式求解 【解答】解:蚂蚁获得食物的概率 故答案为 【点评】本题考查了概率公式:随机事件 A 的概率 P(A)事件 A 可能出现的结果数除以所有可能出 现的结果数

    26、 14 (4 分)如图,在半径为的圆形纸片中,剪一个圆心角为 90的最大扇形(阴影部分) ,则这个扇 形的面积为 ;若将此扇形围成一个无底的圆锥(不计接头) ,则圆锥底面半径为 第 17 页(共 30 页) 【分析】由勾股定理求扇形的半径,再根据扇形面积公式求值;根据扇形的弧长等于底面周长求得底面 半径即可 【解答】解:连接 BC, 由BAC90得 BC 为O 的直径, BC2, 在 RtABC 中,由勾股定理可得:ABAC2, S扇形ABC; 扇形的弧长为:, 设底面半径为 r,则 2r, 解得:r, 故答案为:, 【点评】本题考查了圆周角定理、扇形的面积计算方法、弧长公式等知识关键是熟悉圆

    27、锥的展开图和 底面圆与圆锥的关系利用所学的勾股定理、弧长公式及扇形面积公式求值 15 (4 分)数学家斐波那契编写的算经中有如下问题:一组人平分 10 元钱,每人分得若干;若再加 上 6 人,平分 40 元钱,则第二次每人所得与第一次相同,求第一次分钱的人数设第一次分钱的人数 为 x 人,则可列方程 【分析】根据“第二次每人所得与第一次相同, ”列方程即可得到结论 第 18 页(共 30 页) 【解答】解:根据题意得, 故答案为: 【点评】本题考查了由实际问题抽象出分式方程,正确的理解题意是解题的关键 16 (4 分) 如图, 有一张矩形纸条 ABCD, AB5cm, BC2cm, 点 M,

    28、N 分别在边 AB, CD 上, CN1cm 现 将四边形 BCNM 沿 MN 折叠,使点 B,C 分别落在点 B,C上当点 B恰好落在边 CD 上时,线段 BM 的 长为 cm;在点 M 从点 A 运动到点 B 的过程中,若边 MB与边 CD 交于点 E,则点 E 相应运动的 路径长为 () cm 【分析】第一个问题证明 BMMBNB,求出 NB 即可解决问题第二个问题,探究点 E 的运动 轨迹,寻找特殊位置解决问题即可 【解答】解:如图 1 中, 四边形 ABCD 是矩形, ABCD, 13, 由翻折的性质可知:12,BMMB, 23, MBNB, NB(cm) , 第 19 页(共 30

    29、 页) BMNB(cm) 如图 2 中,当点 M 与 A 重合时,AEEN,设 AEENxcm, 在 RtADE 中,则有 x 222(4x)2,解得 x , DE4(cm) , 如图 3 中,当点 M 运动到 MBAB 时,DE的值最大,DE5122(cm) , 如图 4 中,当点 M 运动到点 B落在 CD 时,DB(即 DE)51(4) (cm) , 点 E 的运动轨迹 EEE, 运动路径EEEB22 (4) ()(cm) 故答案为, () 【点评】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所 学知识解决问题,属于中考填空题中的压轴题 三、解答题(本

    30、题有三、解答题(本题有 8 小题,第小题,第 1719 题每题题每题 6 分,第分,第 20、21 题每题题每题 8 分,第分,第 22、23 题每题题每题 10 分,第分,第 24 题题 12 分,共分,共 66 分)分) 17 (6 分) (1)计算: (2020) 0 |3|; (2)化简: (a2) (a2)a(a1) 第 20 页(共 30 页) 【分析】 (1)直接利用零指数幂的性质和二次根式的性质、绝对值的性质分别化简得出答案; (2)直接利用平方差公式以及单项式乘以多项式计算得出答案 【解答】解: (1) (2020) 0 |3| 123 2; (2) (a2) (a2)a(a

    31、1) a 24a2a 4a 【点评】 此题主要考查了实数运算以及平方差公式以及单项式乘以多项式, 正确掌握相关运算法则是解 题关键 18 (6 分)比较 x 21 与 2x 的大小 (1)尝试(用“” , “”或“”填空) : 当 x1 时,x 21 2x; 当 x0 时,x 21 2x; 当 x2 时,x 21 2x (2)归纳:若 x 取任意实数,x 21 与 2x 有怎样的大小关系?试说明理由 【分析】 (1)根据代数式求值,可得代数式的值,根据有理数的大小比较,可得答案; (2)根据完全平方公式,可得答案 【解答】解: (1)当 x1 时,x 212x; 当 x0 时,x 212x;

    32、当 x2 时,x 212x (2)x 212x 证明:x 212x(x1)20, x 212x 故答案为:; 【点评】本题考查了配方法的应用,利用完全平方非负数的性质是解题关键 19 (6 分)已知:如图,在OAB 中,OAOB,O 与 AB 相切于点 C求证:ACBC小明同学的证明 过程如下框: 证明:连结 OC, 第 21 页(共 30 页) OAOB, AB, 又OCOC, OACOBC, ACBC 小明的证法是否正确?若正确,请在框内打“” ;若错误,请写出你的证明过程 【分析】连结 OC,根据切线的性质和等腰三角形的性质即可得到结论 【解答】解:证法错误; 证明:连结 OC, O 与

    33、 AB 相切于点 C, OCAB, OAOB, ACBC 【点评】本题考查了切线的性质,等腰三角形的性质,熟练正确切线的性质是解题的关键 20 (8 分)经过实验获得两个变量 x(x0) ,y(y0)的一组对应值如下表 x 1 2 3 4 5 6 y 6 2.9 2 1.5 1.2 1 (1)请画出相应函数的图象,并求出函数表达式 (2)点 A(x1,y1) ,B(x2,y2)在此函数图象上若 x1x2,则 y1,y2有怎样的大小关系?请说明理由 【分析】 (1)利用描点法即可画出函数图象,再利用待定系数法即可得出函数表达式 第 22 页(共 30 页) (2)根据反比例函数的性质解答即可 【

    34、解答】解: (1)函数图象如图所示,设函数表达式为, 把 x1,y6 代入,得 k6, 函数表达式为; (2)k60, 在第一象限,y 随 x 的增大而减小, 0 x1x2时,则 y1y2 【点评】本题考查描点法画函数图象、反比例函数的性质、待定系数法等知识,解题的关键掌握描点法 作图,学会利用图象得出函数的性质解决问题,属于中考常考题型 21 (8 分)小吴家准备购买一台电视机,小吴将收集到的某地区 A、B、C 三种品牌电视机销售情况的有 关数据统计如下: 根据上述三个统计图,请解答: 第 23 页(共 30 页) (1) 20142019 年三种品牌电视机销售总量最多的是 B 品牌, 月平

    35、均销售量最稳定的是 C 品牌 (2)2019 年其他品牌的电视机年销售总量是多少万台? (3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由 【分析】 (1)从条形统计图、折线统计图可以得出答案; (2)求出总销售量, “其它”的所占的百分比; (3)从市场占有率、平均销售量等方面提出建议 【解答】 解: (1) 由条形统计图可得, 20142019 年三种品牌电视机销售总量最多的是 B 品牌, 是 1746 万台; 由条形统计图可得,20142019 年三种品牌电视机月平均销售量最稳定的是 C 品牌,比较稳定,极差 最小; 故答案为:B,C; (2)201225%960(万台)

    36、,125%29%34%12%, 96012%115.2(万台) ; 答:2019 年其他品牌的电视机年销售总量是 115.2 万台; (3)建议购买 C 品牌,因为 C 品牌 2019 年的市场占有率最高,且 5 年的月销售量最稳定; 建议购买 B 品牌,因为 B 品牌的销售总量最多,收到广大顾客的青睐 【点评】考查条形统计图、折线统计图、扇形统计图的意义和制作方法,理解统计图中各个数量及数量 之间的关系是解决问题的关键 22 (10 分)为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的 点 A 处测得河北岸的树 H 恰好在 A 的正北方向测量方案与数据如下表:

    37、 课题 测量河流宽度 测量 工具 测量角度的仪器,皮尺等 测量 小组 第一小组 第二小组 第三小组 第 24 页(共 30 页) 测量 方案 示意 图 说明 点 B,C 在点 A 的正东方向 点 B,D 在点 A 的正东 方向 点B在点A的正东方向, 点C在点A的正西方向 测量 数据 BC60m, ABH70, ACH35 BD20m, ABH70, BCD35 BC101m, ABH70, ACH35 (1)哪个小组的数据无法计算出河宽? (2) 请选择其中一个方案及其数据求出河宽 (精确到 0.1m) (参考数据: sin700.94, sin350.57, tan702.75,tan35

    38、0.70) 【分析】 (1)第二个小组的数据无法计算河宽 (2)第一个小组:证明 BCBH60m,解直角三角形求出 AH 即可 第二个小组:设 AHxm,则 CA,AB,根据 CAABCB,构建方程求解即可 【解答】解: (1)第二个小组的数据无法计算河宽 (2)第一个小组的解法:ABHACHBHC,ABH70,ACH35, BHCBCH35, BCBH60m, AHBHsin70600.9456.4(m) 第二个小组的解法:设 AHxm, 则 CA,AB, CAABCB, 第 25 页(共 30 页) 101, 解得 x56.4 答:河宽为 56.4m 【点评】本题考查解直角三角形的应用,等

    39、腰三角形的判定和性质等知识,解题的关键是学会利用参数 构建方程解决问题,属于中考常考题型 23 (10 分)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 ABC 和 DEF 拼在一起,使点 A 与点 F 重合,点 C 与点 D 重合(如图 1) ,其中ACBDFE90,BCEF3cm,ACDF4cm, 并进行如下研究活动 活动一:将图 1 中的纸片 DEF 沿 AC 方向平移,连结 AE,BD(如图 2) ,当点 F 与点 C 重合时停止平移 【思考】图 2 中的四边形 ABDE 是平行四边形吗?请说明理由 【发现】当纸片 DEF 平移到某一位置时,小兵发现四边形 ABDE 为矩形(

    40、如图 3) 求 AF 的长 活动二:在图 3 中, 取 AD 的中点 O, 再将纸片 DEF 绕点 O 顺时针方向旋转 度(090) , 连结 OB, OE(如图 4) 【探究】当 EF 平分AEO 时,探究 OF 与 BD 的数量关系,并说明理由 【分析】 【思考】 由全等三角形的性质得出 ABDE,BACEDF,则 ABDE,可得出结论; 【发现】 连接 BE 交 AD 于点 O,设 AFx(cm) ,则 OAOE(x4) ,得出 OFOAAF2x,由勾股 定理可得,解方程求出 x,则 AF 可求出; 【探究】 如图 2,延长 OF 交 AE 于点 H,证明EFOEFH(ASA) ,得出

    41、EOEH,FOFH,则EHOEOH OBDODB,可证得EOHOBD(AAS) ,得出 BDOH,则结论得证 【解答】解: 【思考】四边形 ABDE 是平行四边形 第 26 页(共 30 页) 证明:如图,ABCDEF, ABDE,BACEDF, ABDE, 四边形 ABDE 是平行四边形; 【发现】如图 1,连接 BE 交 AD 于点 O, 四边形 ABDE 为矩形, OAODOBOE, 设 AFx(cm) ,则 OAOE(x4) , OFOAAF2x, 在 RtOFE 中,OF 2EF2OE2, , 解得:x, AFcm 【探究】BD2OF, 证明:如图 2,延长 OF 交 AE 于点 H

    42、, 四边形 ABDE 为矩形, OABOBAODEOED,OAOBOEOD, OBDODB,OAEOEA, ABDBDEDEAEAB360, 第 27 页(共 30 页) ABDBAE180, AEBD, OHEODB, EF 平分OEH, OEFHEF, EFOEFH90,EFEF, EFOEFH(ASA) , EOEH,FOFH, EHOEOHOBDODB, EOHOBD(AAS) , BDOH2OF 【点评】本题是四边形综合题,考查了平行四边形的判定与性质,平移的性质,矩形的性质,全等三角 形的判定与性质,勾股定理,角平分线的定义,平行线的判定与性质等知识,熟练掌握全等三角形的判 定与性

    43、质是解题的关键 24 (12 分)在篮球比赛中,东东投出的球在点 A 处反弹,反弹后球运动的路线为抛物线的一部分(如图 1 所示建立直角坐标系) ,抛物线顶点为点 B (1)求该抛物线的函数表达式 (2)当球运动到点 C 时被东东抢到,CDx 轴于点 D,CD2.6m 求 OD 的长 东东抢到球后,因遭对方防守无法投篮,他在点 D 处垂直起跳传球,想将球沿直线快速传给队友华 华,目标为华华的接球点 E(4,1.3) 东东起跳后所持球离地面高度 h1(m) (传球前)与东东起跳后 时间 t(s)满足函数关系式 h12(t0.5) 22.7(0t1) ;小戴在点 F(1.5,0)处拦截,他比东 东

    44、晚 0.3s 垂直起跳,其拦截高度 h2(m)与东东起跳后时间 t(s)的函数关系如图 2 所示(其中两条抛 物线的形状相同) 东东的直线传球能否越过小戴的拦截传到点 E?若能,东东应在起跳后什么时间范 围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计) 第 28 页(共 30 页) 【分析】 (1)设 ya(x0.4) 23.32(a0) ,将 A(0,3)代入求解即可得出答案; (2)把 y2.6 代入 y2(x0.4) 23.32,解方程求出 x,即可得出 OD1m; 东东在点 D 跳起传球与小戴在点 F 处拦截的示意图如图 2,设 MDh1,NFh2,当点 M,N,E 三

    45、 点共线时,过点 E 作 EGMD 于点 G,交 NF 于点 H,过点 N 作 NPMD 于点 P,证明MPNNEH, 得出,则 NH5MP分不同情况: ()当 0t0.3 时, ()当 0.3t0.65 时, ()当 0.65t1 时,分别求出 t 的范围可得出答案 【解答】解: (1)设 ya(x0.4) 23.32(a0) , 把 x0,y3 代入,解得 a2, 抛物线的函数表达式为 y2(x0.4) 23.32 (2)把 y2.6 代入 y2(x0.4) 23.32, 化简得(x0.4) 20.36, 解得 x10.2(舍去) ,x21, OD1m 东东的直线传球能越过小戴的拦截传到点

    46、 E 由图 1 可得,当 0t0.3 时,h22.2 当 0.3t1.3 时,h22(t0.8) 22.7 第 29 页(共 30 页) 当 h1h20 时,t0.65, 东东在点 D 跳起传球与小戴在点 F 处拦截的示意图如图 2, 设 MDh1,NFh2, 当点 M,N,E 三点共线时,过点 E 作 EGMD 于点 G,交 NF 于点 H,过点 N 作 NPMD 于点 P, MDNF,PNEG, MHEN,MNPNEH, MPNNEH, , PN0.5,HE2.5, NH5MP ()当 0t0.3 时, MP2(t0.5) 22.72.22(t0.5)20.5, NH2.21.30.9 5

    47、2(t0.5) 20.50.9, 整理得(t0.5) 20.16, 解得(舍去) , 当 0t0.3 时,MP 随 t 的增大而增大, ()当 0.3t0.65 时,MPMDNF2(t0.5) 22.72(t0.8)22.71.2t0.78, NHNFHF2(t0.8) 22.71.32(t0.8)21.4, 2(t0.8) 21.45(1.2t0.78) , 整理得 t 24.6t1.890, 第 30 页(共 30 页) 解得,(舍去) , 当 0.3t0.65 时,MP 随 t 的增大而减小, ()当 0.65t1 时,h1h2,不可能 给上所述,东东在起跳后传球的时间范围为 【点评】本题是二次函数的综合题,主要考查二次函数的性质,待定系数法,二次函数图象上点的坐标 特征, 二次函数的应用, 解题的关键是熟练掌握待定系数法求函数解析式及能将实际问题转化为二次函 数问题求解


    注意事项

    本文(2020届浙江省舟山市中考数学试卷含答案.doc)为本站会员(副主任)主动上传,其收益全归该用户,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!




    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库