1、第4章 一次函数 4.5 4.5 一次函数的应用一次函数的应用第3课时情境引入学习目标1认识一次函数与一元(二元)一次方程之间的联系(重点、难点)2会用函数观点解释方程的意义.观察与思考今天数学王国搞了个家庭Party,各个成员按照自己所在的集合就坐,这时来了“x+y=5”.二元一次方程一次函数x+y=5到我这里来到我这里来这是怎么回事?x+y=5应该坐在哪里呢?问题:(1)解方程2x+20=0;(2)当自变量x为何值时,函数y=2x+20的值为0?解:(1)2x+20=0 2x=-20 x=-10.(2)当y=0时,即 2x+20=0 2x=-20 x=-10.从“函数值”角度看两个问题实际
2、上是同一个问题一次函数与一元一次方程一(3)画出函数 y=2x+20的图象,并确定它与x轴的交点坐标.0 xy2010y=2x+20思考:直线y=2x+20与x轴交点坐标为(_,_),这说明方程2x200的解是x=_.从“函数图象”上看-10 0-10 求一元一次方程 kx+b=0的解 一次函数与一元一次方程的关系一次函数y=kx+b中y=0时x的值 从“函数值”看求一元一次方程 kx+b=0的解 求直线y=kx+b与 x 轴交点的横坐标 从“函数图象”看归纳总结例1:直线y2xb与x轴的交点坐标是(2,0),则关于x的方程2xb0的解是x_解析:直线y2xb与x轴的交点坐标是(2,0),则x
3、2时,y0,关于x的方程2xb0的解是x2.典例精析2 直线ykxb与x轴交点的横坐标就是方程kxb0的解,反之亦然所以在解题时,常需作出一次函数的草图,结合图形分析更加直观、方便方法总结1.已知:一次函数y=0.8x-2与x轴的交点为(2.5,0),你能说出0.8x-2=0的解吗?2.已知:一次函数y=kx-5与x轴的交点为(3,0),那么你能说出kx-5=0的解吗?3.已知关于x的一元一次方程mx+n=0的解是-3,则直线y=mx+n与x轴的交点坐标是_.试一试x=2.5x=3(-3,0)例2 一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,再过几秒它的速度为17米/秒?(从方程、函
4、数表达式及图象三个不同方面进行解答)解法1:设再过x秒它的速度为17米/秒,由题意得2x+5=17解得 x=6答:再过6秒它的速度为17米/秒.解法2:速度y(单位:米/秒)是时间x(单位:秒)的函数y=2x+5由2x+5=17 得 2x12=0由右图看出直线y=2x12与x轴的交点为(6,0),得x=6.Oxy612y=2x12解法3:速度y(单位:米/秒)是时间x(单位:秒)的函数y=2x+5由右图可以看出当y=17时,x=6.y=2x+5xyO61752.5一次函数与二元一次方程的关系二合作探究问题1.方程x+y=5的解有多少个?写出其中的几个.无数个.3,2;0,550yxyx;y,x
5、问题2.等式x+y=5还可以看成一个一次函数,把它 变成y=kx+b的形式是_.y=-x+5问题3.画出y=x+5 的图象55 x 0 0 y=-=-x+5+5 0 0y=-x+5追问:以方程x+y=5的解为坐标的点都在一次函数y=-x+5的图象上吗?都在y=-x+5追问:在一次函数y=-x+5的图象上任取一点,点的坐标适合方程x+y=5吗?都适合追问:以方程x+y=5的解为坐标的所有点组成的图象与一次函数y=-x+5的图象相同吗?相同 在一次函数 y=5x的图象上 方程 x+y=5的解从形到数从数到形归纳总结二元一次方程的解一次函数图象上点的坐标一一对应二元一次方程与一次函数的关系例3:下面
6、四条直线,其中直线上每个点的坐标都是二元一次方程x2y2的解的是()解析:观察直线与坐标轴的交点坐标与二元一次方程的相应数值对应情况即可找到答案对于二元一次方程x2y2,当x0时,y1;当y0时,x2,故直线与两坐标轴的交点应该是(0,1),(2,0)C 直线与x轴的交点的横坐标即是二元一次方程中当y0时x的值;直线与y轴的交点的纵坐标即是二元一次方程中当x0时y的值,注意数形结合方法总结1.方程 x y=1 有一个解是 ,则一次函数 y=x 1 的图象上必有一个点的坐标为 .12yx2.一次函数 y=2x 4 的图象上有一个点的坐标为(3,2),则方程 2x y=4 必有一个解是_.23yx
7、(2,1)练一练1利用图象解一元一次方程x+3=0.3y=x+3Oy解:作y=x+3图象如右图.由图象知y=x+3交x轴于(-3,0),原方程的解为x=3.x3 解:画出两个函数y=5x1 和y=2x+5的图象 由图象知,两直线交于点(2,9),所以原方程的解为 x=2Oy=5x1y=2x+592xy2利用函数图象求x的值:5x1=2x+5.一次函数与一次方程一元一次方程的解为对应一次函数的值为0时相应的自变量的值,即一次函数与x轴交点的横坐标.二元一次方程的解为对应一次函数图象上点的坐标 成语故事南辕北辙讲了一个人 如果点O表示魏国的位置,点A表示楚国的位置,我们假设楚国与魏国的距离为30
8、km,以魏国为坐标原点,我们规定向南为正方向,而此人从魏国出发向北到了点B也走了30 km,请同学们把这3个点在数轴上表示出来导入新课导入新课情境引入现在的位置魏国楚国OA-30-20-10 0102030B若我们假设楚国A1与魏国的距离为50km,同样以魏国为坐标原点,规定向南为正方向,而此人从魏国出发向北到了点B1也走了50 km,请同学们也把这两个点在数轴上表示出来OAB-30-10 0102030-204050-40-50B1A1思考:观察点A,A1与点B,B1两对点所表示的数,你发现了什么?讲授新课讲授新课相反数一合作探究活动:请观察这两个数,它们有什么异同点?你还能列举两个这样的数
9、吗?5.35.3数字相同符号不同 如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数.特别地,0的相反数是0.3232数字相同数字相同符号不同符号不同+-55数字相同数字相同符号不同符号不同+知识要点例1 画一条数轴,并标出表示下列各数的相反数的点:3,1.5,-6解:3的相反数是-3,;1.5的相反数是-1.5;-6的相反数是6,且-3,-1.5,6在数轴上对应的点分别为A,B,C,如下图所示:4 3 2 1 0 1 2 3 4 5 6ABC典例精析练一练1.判断题,看谁回答的又对又快!(1)10是10的相反数()(2)10是10的相反数()(3)1.5与1.
10、5互为相反数()(4)2是相反数()2.写出下列各数的相反数:3,-7,-2.1,32,0,20,115解:3的相反数是-3;-7的相反数是7;-2.1的相反数是2.1;0的相反数是0;20的相反数是-20;的相反数是-;2323511的相反数是 .511问题:前面提到“南辕北辙”的故事中30和30,50和50在数轴上的位置有什么关系?在数轴上,-30与30,-50和50所对应的点位于原点两侧,且与原点的距离相等.思考:数轴上表示相反数的两个点和原点有什么关系?2.互为相反数的两个数到原点的距离相等.1.互为相反数的两个数分别位于原点的两侧(0除外);-30-10 0102030-204050
11、-40-50例2 如图,图中数轴的单位长度为1(1)如果点A、B表示的数是互为相反数,那么点C 表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?DEACB 解:(1)点C表示的数是-1;(2)点C表示的数是0.5,D表示的数是-4.5方法总结:已知数轴上两点表示的数互为相反数,那么数轴上这两点到原点的距离相等,两点的中点即为原点所在.例3 在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数.解:因为数轴上A点表示7,且点C到点A的距离为2,所以C点有两种可能5或9又因为B,C两点所表示的数互为相反数,所以B点也有
12、两种可能-5或-9 数轴上与原点距离是2的点有_个,这些点表示的数是_;与原点的距离是5的点有_个,这些点表示的数是_.02-2两 2和-25和-5两 练一练 一般地,设a是一个正数,数轴上与原点的距离是a的点有_个,它们分别在原点的_,互为_,表示为_,我们说这两点关于原点对称.注意:数轴上,a和-a互为相反数,它们表示的点到原点的距离相等.两左右-a和a相反数方法总结多重符号的化简二思考:a的相反数是什么?a 的相反数是a,a可表示任意有理数.在一个数前面加上“”号表示求这个数的相反数,如果在这些数前面加上“”号呢?在一个数前面加上“”仍表示这个数,“”号可省略 填空:(1)-(+0.8)
13、;(2)-(-3);(3)+(+3);(4)+(-0.15);(5)+-(-1.1);(6)-+(-7).例4 解:(1)-(+0.8)=-0.8;(2)-(-3)=3;(3)+(+3)=3;(4)+(-0.15)=-0.15;(5)+-(-1.1)=+(+1.1)=1.1;(6)-+(-7)=-(-7)=7.由内向外依次去括号 对于数字前面含有多个符号的数的化简,只要观察“”号的个数即可如果有奇数个“”号,结果的符号就是“”号;如果有偶数个“”号,结果的符号就是“”号方法总结 (1)是_的相反数,(2)是_的相反数,=_ (3)是_的相反数,(4)是_的相反数,4_41.7_1.7100_1
14、0015157.17.11001004-4)51()51(练一练1-1.6是_的相反数,_的相反数是0.32下列几对数中互为相反数的一对为()A 和 B 与 C 与 D8与-(-8)8()8()8()8()8()8(1.6C-0.3当堂练习当堂练习(1)6是6的相反数();(2)5是相反数();(3)与 互为相反数();(4)1和1互为相反数().21221 (5)相反数等于它本身的数只有0 (6)符号不同的两个数互为相反数 3.判断:4.先写出下列各数,再把写出的数在数轴上表示出来(1)-3的相反数;(2)0的相反数;(3)相反数是的数;(4)相反数是-0.5的数122解:(1)-3的相反数
15、是3;(2)0的相反数是0;(3)相反数是 的数是 ;(4)相反数是-0.5的数是0.5,如图,在数轴上表示为:1221225.已知a,b在数轴上的位置如图所示(1)分别写出a,b的相反数(2)在数轴上分别表示a,b的相反数解:(1)a,b的相反数是-a,-b;(2)如图所示.-a-b6.化简下列各式的符号,并回答问题:-(-2)=_;+(-15)=_;-(-4)=_;-(+3.5)=_;-(-5)=_.问:(1)当+5前面有2018个负号,化简后结果是多少?(2)当-5前面有2019个负号,化简后结果是多少?你能 总结出什么规律?2-15-43.55解:(1)当+5前面有2018个负号,化简后结果是+5;(2)当-5前面有2019个负号,化简后结果是+5.规律:在一个数的前面有偶数个负号,化简结果是本身;在一个数的前面有奇数个负号,化简结果是这个数的相反数课堂小结课堂小结相反数定义应用只有符号不同的两个数互为相反数;0的相反数是0代数意义几何意义数a的相反数是-a两个互为相反数的数在数轴上所表示的点在原点的两旁,且与原点的距离相等求某数的相反数化简:-(-a)=a如果a 表示有理数,那么a的相反数是a,a一定是负数吗?注意解:不一定,可以是正数、负数,也可以是0.见本课时练习课后作业课后作业