1、 2.2直线、平面平行的判定及其性质测试直线、平面平行的判定及其性质测试 20170508 第 1 题. 已知a,m,b,且m/,求证:ab/ 第 2 题. 已知:b,a/,a/,则a与b的位置关系是( ) ab/ ab a,b相交但不垂直 a,b异面 第 3 题. 如图,已知点P是平行四边形ABCD所在平面外的一点,E,F分别是PA,BD上的点且 PE EABF FD,求证:EF/平面PBC b a m P E A C B D F 第 4 题. 如图,长方体 1111 ABCDABC D中, 11 E F是平面 11 AC上的线段,求证: 11 E F/平面AC 第 5 题. 如图,在正方形
2、ABCD中,BD的圆心是A,半径为AB,BD是正方形ABCD的对角线, 正方形以AB所在直线为轴旋转一周则图中,三部分旋转所得几何体的体积之比 为 第 6 题. 如图, 正方形ABCD的边长为13, 平面ABCD外一点P到正方形各顶点的距离都是13,M, N分别是PA,DB上的点,且5 8PM MABN ND () 求证:直线MN/平面PBC; () 求线段MN的长 第 7 题. 如图,已知P为平行四边形ABCD所在平面外一点,M为PB的中点, A B C D 1 A 1 D 1 B 1 C 1 F 1 E A B C D A B C E N D M P 求证:PD/平面MAC 第 8 题.
3、如图,在正方体 1111 ABCDABC D中,E,F分别是棱BC, 11 C D的中点,求证:EF/平 面 11 BB D D 第 9 题. 如图,在正方体 1111 ABCDABC D中,试作出过AC且与直线 1 D B平行的截面,并说明理由 C D A B M P 1 A 1 B 1 D 1 C F E A B C D 第 10 题. 设a,b是异面直线,a平面,则过b与平行的平面( ) 不存在 有 1 个21 世纪教育网 可能不存在也可能有 1 个 有 2 个以上 第 11 题. 如图,在正方体 1111 ABCDABC D中,求证:平面 1 ABD/平面 11 CD B 第 12 题
4、. 如图,M、N、P分别为空间四边形ABCD的边AB,BC,CD上的点,且 AM MBCN NBCP PD 求证:()AC/平面MNP,BD/平面MNP; ()平面MNP与平面ACD的交线AC/ 1 A 1 D 1 B 1 C A B C D 1 D 1 A 1 C 1 B A B D C A M E 第 13 题. 如图,线段AB,CD所在直线是异面直线,E, F,G,H分别是线段AC,CB,BD,DA的中点 () 求证:EFGH共面且AB面EFGH, CD面EFGH; () 设P,Q分别是AB和CD上任意一点,求 证:PQ被平面EFGH平分 第 14 题. 过平面外的直线l,作一组平面与相
5、交,如果所得的交线为a,b,c,则这些交线 的位置关系为( ) 都平行 都相交且一定交于同一点 都相交但不一定交于同一点 都平行或都交于同一点 第 15 题. a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是( ) 过A且平行于a和b的平面可能不存在 过A有且只有一个平面平行于a和b 过A至少有一个平面平行于a和b 过A有无数个平面平行于a和b 第 16 题. 若空间四边形ABCD的两条对角线AC,BD的长分别是 8,12,过AB的中点E且平行于 BD、AC的截面四边形的周长为 A E H C F B G D M P Q N 第 17 题. 在空间四边形ABCD中,E,F,G,H
6、分别为AB,BC,CD,DA上的一点, 且EFGH 为菱形, 若AC/平面EFGH,BD/平面EFGH,ACm,BDn, 则A E B E: 第 18 题. 如图, 空间四边形ABCD的对棱AD、BC成60 的角, 且ADBCa, 平行于AD与BC 的截面分别交AB、AC、CD、BD于E、F、G、H ()求证:四边形EGFH为平行四边形; ()E在AB的何处时截面EGFH的面积最大?最大面积是多少? 第 19 题. P为ABC所在平面外一点,平面/平面ABC,交线段PA,PB,PC于ABC , 2 3PA AA,则 ABCABC SS 第 20 题. 如图,在四棱锥PABCD中,ABCD是平行
7、四边形,M,N分别是AB,PC的中点 求证:MN/平面PAD A E B H F D G C A P D M N B C 第 21 题. 已知平面/平面,AB,CD是夹在两平行平面间的两条线段,A,C在内,B,C 在内,点E,F分别在AB,CD上,且AE EBCF FDm n 求证:EF/平面 第 22 题. 已知a,m,b,且m/,求证:ab/ 第 23 题. 三棱锥A BCD中,ABCDa,截面MNPQ与AB、CD都平行,则截面MNPQ的周 长是( ) 4a 2a A C E F B D 图(b) H G 3 2 a 周长与截面的位置有关 第 24 题. 已知:b,a/,a/,则a与b的位
8、置关系是( ) ab/ ab a、b相交但不垂直 a、b异面 第 25 题. 如图,已知点P是平行四边形ABCD所在平面外的一点,E、F分别是PA、BD上的点且 :PE EABF FD,求证:EF/平面PBC 第 26 题. 如图,长方体 1111 ABCDABC D中, 11 E F是平面 11 AC上的线段,求证: 11 E F/平面ABCD 第 27 题. 已知正方体 1111 ABCDABC D, 求证:平面 11 AB D/平面 1 C BD P E A C B D F A B C D 1 A 1 D 1 B 1 C 1 F 1 E D 1 A 1 B 1 C 1 D 第 28 题. 已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面 如图,已知直线a,b平面,且ab/,a/,a,b都在外 求证:b/ 第 29 题. 如图,直线AA,BB,CC相交于O,AOAO ,BOBO ,COCO 求证:ABC/平面ABC 来源:21 世纪教育网 c b a O A B C A B C 第 30 题. 直线a与平面平行的充要条件是( ) 直线a与平面内的一条直线平行 直线a与平面内两条直线不相交 直线a与平面内的任一条直线都不相交 直线a与平面内的无数条直线平行