欢迎来到163文库! | 帮助中心 精品课件PPT、教案、教学设计、试题试卷、教学素材分享与下载!
163文库
全部分类
  • 办公、行业>
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 中职>
  • 大学>
  • 各类题库>
  • ImageVerifierCode 换一换
    首页 163文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    中职数学基础模块下册:73《平面向量的内积》课件(2份).ppt

    • 文档编号:6122385       资源大小:1.87MB        全文页数:37页
    • 资源格式: PPT        下载积分:20文币     交易提醒:下载本文档,20文币将自动转入上传用户(ziliao2023)的账号。
    微信登录下载
    快捷注册下载 游客一键下载
    账号登录下载
    二维码
    微信扫一扫登录
    下载资源需要20文币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    优惠套餐(点此详情)
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、试题类文档,标题没说有答案的,则无答案。带答案试题资料的主观题可能无答案。PPT文档的音视频可能无法播放。请谨慎下单,否则不予退换。
    3、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者搜狗浏览器、谷歌浏览器下载即可。。

    中职数学基础模块下册:73《平面向量的内积》课件(2份).ppt

    1、第七章第七章平面向量平面向量7.3向量的内积创设情境创设情境兴趣导入兴趣导入Fs图721O如图721所示,水平地面上有一辆车,某人用100 N的力,30角的方向拉小车,使小车前进了100 m朝着与水平线成那么,这个人做了多少功?做功等于力与在力的方向上移动的距离的乘积力F是水平方向的力233WFcos30 s10010500与垂直方向的力的和,垂直方向上没有产生位移,没有做功,水平方向上产生的位移为s,即动脑思考动脑思考探索新知探索新知233WFcos30 s10010500这里,力F与位移s都是向量,而功W是一个数量,它等于由两个向量F,s的模及它们的夹角的余弦的乘积,W叫做向量F与向量s的

    2、内积内积,它是一个数量,又叫做数量积数量积 BAOabOAa,如图,设有两个非零向量a,b,作OBb,由射线OA与OB所形成的的角叫做向量a与与向量b的夹角夹角,记作两个向量a,b的模与它们的夹角的余弦之积叫做向量a与向量b的内积内积,记作ab,即 ab|a|b|cos (7.10)由内积的定义可知 a00,0a0.动脑思考动脑思考探索新知探索新知动脑思考动脑思考探索新知探索新知由内积的定义可以得到下面几个重要结果:当ab时,有0,所以aa|a|a|a|2,即|a|a acos|a ba b当0时,ab|a|b|;当=时,ab|a|b|180ab0ab.对非零向量a,b,有 动脑思考动脑思考探

    3、索新知探索新知可以验证,向量的内积满足下面的运算律:abba.aba bab (ab)cacbc.a(bc)(ab)c.一般地,向量的内积不满足结合律,即 巩固知识巩固知识典型例题典型例题例例1 已知|a|3,|b|2,60,求ab解解 ab|a|b|cos 32cos 603巩固知识巩固知识典型例题典型例题22例例2 已知|a|b|,ab,求22|222 a ba b解解 cos由于 0180,所以 135运用知识运用知识强化练习强化练习1431.已知|a|7,|b|4,a和b的夹角为60,求ab2.已知aa9,求|a|.3.已知|a|2,|b|3,30,求(2ab)b 6 3 9+动脑思考

    4、动脑思考探索新知探索新知设平面向量a(x1,y1),b(x2,y2),由于ij,故ij 0,又|i|j|1,所以 ab(x1 iy1j)(x2 iy2j)x1 x2 i i x1 y2 i j x2 y1 i j y1 y2 j j x1 x2|j|2 y1 y2|j|2 x1 x2 y1 y2.这就是说,两个向量的内积等于它们对应坐标乘积的和,即 ab x1 x2 y1 y2 (7.11)aa a22xy设a(x,y),则,即a 22xy(7.12)动脑思考动脑思考探索新知探索新知121222221122|x xy ya ba bxyxy cos (7.13)利用公式(7.13)可以方便地求

    5、出两个向量的夹角.由于a bab0,由公式(7.11)可知 ab0 x1 x2 y1 y20 因此 ab x1 x2 y1 y20(7.14)由平面向量内积的定义可以得到,当a,b是非零向量时,巩固知识巩固知识典型例题典型例题例例3 求下列向量的内积:(1)a(2,3),b(1,3);(2)a(2,1),b(1,2);(3)a(4,2),b(2,3)解解(1)ab21(3)37;(2)ab21(1)20;(3)ab2(2)2(3)14 巩固知识巩固知识典型例题典型例题例例4已知a(1,2),b(3,1)求ab,|a|,|b|,解解 ab(1)(3)215.|a|22(1)25a a|b|22(

    6、3)110b b52|210 5a ba bcos所以 45巩固知识巩固知识典型例题典型例题例例5判断下列各组向量是否互相垂直:(1)a(2,3),b(6,4);(2)a(0,1),b(1,2)解解 (1)因为ab(2)6340,所以a b(2)因为ab01(1)(2)2,所以a与b不垂直 运用知识运用知识强化练习强化练习2-71.已知a(5,4),b(2,3),求ab 2.已知a(2,3),b(3,4),c(1,3),求a(bc)积叫做向量a与向量b的内积内积,记作ab两个向量a,b的模与它们的夹角的余弦之 平面向量内积的概念平面向量内积的概念?自我反思自我反思目标检测目标检测 学习行为学习

    7、行为 学习效果学习效果 学习方法学习方法 自我反思自我反思目标检测目标检测作作 业业读书部分:阅读教材相关章节 实践调查:试着编写一道关于向量书面作业:教材习题.3组(必做)内积的问题并解答教材习题.3组(选做)继续探索继续探索活动探究活动探究主讲:张传玺7.3 7.3 平面向量的内积平面向量的内积【教学目标教学目标】知识目标:知识目标:(1)了解平面向量内积的概念及其几何意义)了解平面向量内积的概念及其几何意义.(2)了解平面向量内积的计算公式)了解平面向量内积的计算公式.为利用向量的内积研为利用向量的内积研究有关问题奠定基础究有关问题奠定基础.能力目标:能力目标:通过实例引出向量内积的定义

    8、通过实例引出向量内积的定义,培养学生观察和归纳的能培养学生观察和归纳的能力力【教学重点教学重点】平面向量数量积的概念及计算公式平面向量数量积的概念及计算公式.【教学难点教学难点】数量积的概念及利用数量积来计算两个非零向量的夹角数量积的概念及利用数量积来计算两个非零向量的夹角【教学过程】*创设情境 兴趣导入Fs图721O30 如图如图721所示,水平地面上有一辆车,某人用所示,水平地面上有一辆车,某人用100 N的力,朝着与水平线成的力,朝着与水平线成 角的方向拉小车,使小车前角的方向拉小车,使小车前进了进了100 m那么,这个人那么,这个人做了多少功?做了多少功?30*动脑思考动脑思考 探索新

    9、知探索新知【新知识】【新知识】我们知道,这个人做功等于力与在力的方向上移动我们知道,这个人做功等于力与在力的方向上移动的距离的乘积如图的距离的乘积如图722所示,设水平方向的单位向所示,设水平方向的单位向量为量为i i,垂直方向的单位向量为,垂直方向的单位向量为j j,则,则i+y ji+y jF xsin30cos30FiFj 即力即力F F是水平方向的力与垂直方向的力的和,垂直方是水平方向的力与垂直方向的力的和,垂直方向上没有产生位移,没有做功,水平方向上产生的位移向上没有产生位移,没有做功,水平方向上产生的位移为为s s,即,即 (J)30W WF Fcoss s100101050023

    10、OxijF(x,y)y 图图722这里,力这里,力F F与位移与位移s s都是向量,而都是向量,而功功W是一个数量,它等于由两个向是一个数量,它等于由两个向量量F F,s s的模及它们的夹角的余弦的的模及它们的夹角的余弦的乘积,乘积,W叫做向量叫做向量F F与向量与向量s s的内积的内积,它是一个数量,又叫做数量积它是一个数量,又叫做数量积如图如图723,设有两个非零向量,设有两个非零向量a a,b b,作,作b b,由射线由射线OAOA与与OBOB所形成的角所形成的角a a,OA OB 叫做向量叫做向量a a与向量与向量b b的夹角,记作的夹角,记作b两个向量两个向量a,b b的模与它们的夹

    11、角的余弦之积叫做向量的模与它们的夹角的余弦之积叫做向量a a与向量与向量b b的内积的内积,记作,记作a ab b,即即 a ab ba a|b b|c cosos (7.10)(7.10)上面的问题中,人所做的功可以记作上面的问题中,人所做的功可以记作WF Fs s.由内积的定义可知由内积的定义可知a a00,0a a0由内积的定义可以得到下面几个重要结果由内积的定义可以得到下面几个重要结果:时,时,a ab b|a a|b b|.|.(1 1)当当 0时,时,a ab b|a a|b b|;当;当 180(2)(2)coscos|a ba b.(3 3)当当b ba a时,有时,有 0,所

    12、以,所以a aa a|a a|a a|a a|2 2,即,即|a a|a a (4 4)当当时,时,a ab b,因此,因此,a ab b因此对非零向量因此对非零向量a a,b b,有,有,90a bcos900,aba ab b0a ab.b.可以验证,向量的内积满足下面的运算律:可以验证,向量的内积满足下面的运算律:(1)(1)a ab bb ba a(2 2)()b b(a ab b)a a(b b)a(3 3)(a ab b)c ca ac cb bc c注意:一般地,向量的内积不满足结合律,即注意:一般地,向量的内积不满足结合律,即 a a(b bc c)(a ab b)c c.请结

    13、合实例进行验证请结合实例进行验证.*巩固知识巩固知识 典型例题典型例题例例1 1 已知已知|a a|3,|b b|2,求求a ab b60解解 a ab b|a a|b b|cos|cos 32cos360例例2 2 已知已知|a a|b b|,a ab b,求求 22解解 coscos|a ba b22222由于由于 00180所以所以 135*运用知识运用知识 强化练习强化练习1.1.已知已知|a a|7,|b b|4,a a和和b b的夹角为的夹角为,求,求a ab b602.2.已知已知a aa a9,求求|a a|3.3.已知已知|a a|2,|b b|3,,求,求(2a ab b)

    14、b b30*动脑思考 探索新知设平面向量设平面向量a a(x x1 1,y y1 1),),b b(x x2 2,y y2 2),i i,j j分别为分别为x x轴,轴,y y轴上的单位向量,由于轴上的单位向量,由于i ij j,故,故i ij j 0,又,又|i i|j j|1,所以,所以a ab b(x x1 1 i iy y1 1j j)(x x2 2 i iy y2 2j j)x x1 1 x x2 2 i i i i x x1 1 y y2 2 i i j j x x2 2 y y1 1 i i j j y y1 1 y y2 2 j j j j x x1 1 x x2 2|j j|

    15、2 2 y y1 1 y y2 2|j j|2 2 x x1 1 x x2 2 y y1 1 y y2 2这就是说,两个向量的内积等于它们对应坐标乘积的这就是说,两个向量的内积等于它们对应坐标乘积的和,即和,即 a ab b x x1 1 x x2 2 y y1 1 y y2 2 (7.11)(7.11)利用公式利用公式(711)可以计算向量的模设可以计算向量的模设a a(x,yx,y),则则aa a22xy,即,即a 22xy (7.12)(7.12)由平面向量内积的定义可以得到,当由平面向量内积的定义可以得到,当a a、b b是非零向量是非零向量时,时,coscos|a ba b12122

    16、2221122 x xy yxyxy (7.13)(7.13)利用公式利用公式(7.13)(7.13)可以方便地求出两个向量的夹角可以方便地求出两个向量的夹角.由于由于a ab ba ab b0,由公式,由公式(7.11)可知可知a ab b0 x x1 1 x x2 2 y y1 1 y y2 20因此因此a ab b x x1 1 x x2 2 y y1 1 y y2 20(7.14)(7.14)利用公式利用公式(7.14)(7.14)可以方便地利用向量的坐标来研究可以方便地利用向量的坐标来研究向量垂直的问题向量垂直的问题*巩固知识巩固知识 典型例题典型例题例例3 3 求下列向量的内积:求

    17、下列向量的内积:(1 1)a a (2,3),3),b b(1,3);(2 2)a a (2,1),1),b b(1,2);(3 3)a a (4,2),b b(2,2,3)3)解解 (1)(1)a ab b21(3)3)37 7;(2)(2)a ab b21(1)1)20;(3)(3)a ab b2(2)2)2(3)3)1414例例4 4 已知已知a a(1,2),1,2),b b(3,1).3,1).求求a ab b,|,|a a|,|,|b b|,|,解解 a ab b(1)(1)(3)3)215;|a a|22(1)25a a|b b|22(3)110b bcoscos|a ba b5

    18、2210 5所以所以 45例例5 5 判断下列各组向量是否互相垂直:判断下列各组向量是否互相垂直:(1)(1)a a(2,3),2,3),b b(6,4);(2)(2)a a(0,1),1),b b(1,2)2)解解 (1)(1)因为因为a ab b(2)2)6340,所以,所以a ba b(2)(2)因为因为a ab b01(1)1)(2)2)2,所以,所以a a与与b b不垂直不垂直*运用知识运用知识 强化练习强化练习 1 1、已知、已知a a(5,4)4),b b(2,3),求,求a ab b 2 2、已知、已知a a(1,),),3b b(0,),),3求求 3 3、已知、已知a a(

    19、2,3)3),b b(3,4),c c(1,3),1,3),求求a a(b bc c)4 4、判断下列各组向量是否互相垂直:判断下列各组向量是否互相垂直:(1)(1)a a(2,2,3)3),b b(3,2)2);(2)a a(2,0),b b(0,3)3);(3)a a(2,1)2,1),b b(3,4)5.5.求下列向量的模:求下列向量的模:(1)(1)a a(2,3)3),(2)b b(8,6)6)*理论升华理论升华 整体建构整体建构思考并回答下面的问题:思考并回答下面的问题:平面向量内积的概念、几何意义平面向量内积的概念、几何意义?结论:结论:两个向量两个向量a,b b的模与它们的夹角

    20、的余弦之积叫做向量的模与它们的夹角的余弦之积叫做向量a a与向量与向量b b的内积的内积,记作,记作a ab b,即即a ab b的几何意义就是向量的几何意义就是向量a a的模与向量的模与向量b b在向量在向量a a上的投影上的投影的乘积的乘积 a ab ba a|b b|c cosos b (7.10)(7.10)*归纳小结归纳小结 强化思想强化思想本次课学了哪些内容?重点和难点各是什么?本次课学了哪些内容?重点和难点各是什么?*自我反思自我反思 目标检测目标检测 本次课采用了怎样的学习方法?你是如何进行学习的?本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?你的学习效果如何?1.1.已知已知a a(5,4),4),b b(2,3),求求a ab b2.2.已知已知a a(2,3),3),b b(3,4),4),c c(1,3),1,3),求求a a(b bc c)*继续探索继续探索 活动探究活动探究(1)(1)读书部分:阅读教材读书部分:阅读教材 (2)(2)书面作业:教材习题书面作业:教材习题7.3 A7.3 A组(必做);组(必做);7.3 B组(选做)组(选做)(3)(3)实践调查:编写一道向量内积问题并解答实践调查:编写一道向量内积问题并解答


    注意事项

    本文(中职数学基础模块下册:73《平面向量的内积》课件(2份).ppt)为本站会员(ziliao2023)主动上传,其收益全归该用户,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!




    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库