欢迎来到163文库! | 帮助中心 精品课件PPT、教案、教学设计、试题试卷、教学素材分享与下载!
163文库
全部分类
  • 办公、行业>
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 中职>
  • 大学>
  • 各类题库>
  • ImageVerifierCode 换一换
    首页 163文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    《相似三角形的性质》公开课教学设计(北师大版九年级数学上册).docx

    • 文档编号:5884242       资源大小:142.31KB        全文页数:10页
    • 资源格式: DOCX        下载积分:20文币     交易提醒:下载本文档,20文币将自动转入上传用户(刘殿科)的账号。
    微信登录下载
    快捷注册下载 游客一键下载
    账号登录下载
    二维码
    微信扫一扫登录
    下载资源需要20文币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    优惠套餐(点此详情)
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、试题类文档,标题没说有答案的,则无答案。带答案试题资料的主观题可能无答案。PPT文档的音视频可能无法播放。请谨慎下单,否则不予退换。
    3、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者搜狗浏览器、谷歌浏览器下载即可。。

    《相似三角形的性质》公开课教学设计(北师大版九年级数学上册).docx

    1、第四章 图形的相似4. 7 相似三角形的性质 教学设计 教材分析学生在第一课时已经学过相似三角形对应高、对应角平分线以及对应中线的判定,对相似三角形的性质已有所了解,之前还学过全等三角形的性质、判定,知道了全等三角形的周长、面积是相等的.而研究相似三角形和全等三角形的性质和判定有许多相通之处.因此,前面所学的内容为本节学习相似多边形周长和面积的性质做好了铺垫.在相关知识的学习过程中,学生已经历了许多探究活动,如全等三角形的每一个判定、性质的得出都是通过具体的试验,让学生充分的体验并能自己进行总结、探究.学习相似三角形的判定后,特别是学习了测量旗杆的高度等实际问题,就能感受到数学的实际价值.在本

    2、节内容的学习过程中,从估算距离和面积这一身边的例子出发,学生一方面通过交流、归纳,总结相似多边形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处;另一方面运用相似多边形的周长比,面积比解决实际问题,增强对知识的应用意识. 教学目标1. 经历探索相似三角形中对应线段比值与相似比的关系的过程,理解相似三角形的性质.利用相似三角形的性质解决一些实际问题.2. 培养学生的探索精神和合作意识;通过运用相似三角形的性质,增强学生的应用意识.在探索过程中发展学生类比的数学思想及全面思考的思维品质. 教学重难点3. 在探索过程中发展学生积极的情感、态度、价值观,体现解决问题策略的多样性.【教学重点

    3、】 1相似多边形的周长比、面积比与相似比的关系.2相似多边形的周长比、面积比在实际中的应用.【教学难点】 利用相似多边形的性质解决实际问题. 课前准备课件. 教学过程一、复习回顾问:相似三角形的识别方法有哪些?证二组对应角相等,两三角形相似.证二组对应边成比例,且夹角相等,两三角形相似.证三组对应边成比例,两三角形相似.【设计意图】:让学生在回顾上节课的内容之时,能对这节课的内容有些许了解.二、合作交流,探究新知(一)回顾问:你知道相似三角形的特征是什么吗?如下图,A B C ABC边:对应边成比例角:对应角相等问:什么是相似比?相似比=对应边的比值(二)探究1探究相似三角形对应高的比与相似比

    4、的关系相似三角形对应高的比等于相似比.理由是:如图ABCDEF.B =E.又AMB =DNE =900.AMBDNE.(两角对应相等的两个三角形相似). (相似三角形对应边成比例).即:相似三角形对应高的比等于相似比.2探究相似三角形对应角平分线的比与相似比的关系相似三角形对应角平分线的比等于相似比.理由是:相似三角形对应角平分线的比等于相似比.理由是:如图ABCDEF.B =E, BAC=EDF.又AM,DN分别是BAC和EDF的角平分线.BAM=EDN.AMBDNE.(两角对应相等的两个三角形相似). (相似三角形对应边成比例).即:相似三角形对应角平分线的比等于相似比.3探究相似三角形对

    5、应中线的比与相似比的关系相似三角形对应中线的比等于相似比.理由是:如图ABCDEF.B =E, 又AM,DN分别是ABC和DEF的中线. 且B =E.AMBDNE.(两边对应成比例且夹角相等的两个三角形相似). (相似三角形对应边成比例).即:相似三角形对应中线的比等于相似比.4探究相似三角形周长的比与相似比的关系相似三角形周长的比等于相似比.理由是:如图,在 ABC与 ABC中,ABCABC,且相似比为k. (相似三角形对应边成比例,对应边的比叫做相似比).即:相似三角形周长的比等于相似比.(三)总结1三个角对应相等,三条边对应成比例的两个三角形, 叫做相似三角形相似三角形的各对应角相等,各

    6、对应边对应成比例.相似三角形对应高的比,对应角平分线的比,对应中线的比,对应周长的比等于相似比.相似比等于1的两个三角形全等.注意:要把表示对应角顶点的字母写在对应的位置上.反之,写在对应位置上的字母就是对应角的顶点!由于相似三角形与其位置无关,因此,能否弄清对应是正确解答的前提和关键.2判定两个三角形相似的方法:两角对应相等的两个三角形相似.三边对应成比例的两个三角形相似.两边对应成比例,且夹角相等的两个三角形相似.斜边直角边对应成比例的两个三角形相似.平行于三角形一边的直线截其它两边(或其延长线),所截得的三角形与原三角形相似.3如图, 已知ABC, DE BC, 交AB,AC或其延长线于

    7、D,E,则有如下结论: 结论1:平行于三角形一边直线截其它两边(或其延长线),所截得的三角形与原三角形相似;如图:在ABC中,如果DEBC,那么ADEABC.结论2:平行于三角形一边直线截其它两边(或其延长线),所得的对应线段成比例.如图:在ABC中,如果DEBC,三、运用新知例1:如图所示,在等腰ABC中,底边BC=60cm,AD=40cm,四边形PQRS是正方形.(1) ASR与ABC相似吗?为什么?(2)求正方形PQRSR的边长.解:(1) ASRABC.理由是:四边形PQRS是正方形RSBCASR= BARS= CASRABC.(2)由(1)可知, ASRABC.(相似三角形对应高的比

    8、等于相似比)设正方形PQRS的边长为x cm, 则AE=(40-x)cm,解得,x=24.所以正方形PQRS的边长为24cm.例2:问题:ABCABC它们面积的比与相似比有什么关系?如图, ABCABC,相似比是k(如34).(1)ABC与ABC的面积如何表示?(2)ABC与ABC的面积的比是多少?解:(1)分别作高CD,CD,则如果两个相似三角形的相似比是k ,通过上面的活动,你得出了什么结论?拓展新知:相似三角形面积的比等于相似比的平方.如图,如果ABCABC,且这个结论在今后的学习中作用很大,若能理解运用,则受益非浅.四、归纳小结相似多边形的性质:相似三角形对应高的比,对应角平分线的比,对应中线的比,对应周长的比都等于相似比.相似三角形面积的比等于相似比的平方. 教学反思略.


    注意事项

    本文(《相似三角形的性质》公开课教学设计(北师大版九年级数学上册).docx)为本站会员(刘殿科)主动上传,其收益全归该用户,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!




    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库