1、1 1 电子的自旋电子的自旋 2 2 电子的自旋算符和自旋波函数电子的自旋算符和自旋波函数 3 3 简单塞曼效应简单塞曼效应 4 两个角动量耦合两个角动量耦合 5 光谱精细结构光谱精细结构 6 6 全同粒子的特性全同粒子的特性 7 7 全同粒子体系波函数全同粒子体系波函数Pauli Pauli 原理原理 8 8 两电子自旋波函数两电子自旋波函数 9 9 氦原子(微扰法)氦原子(微扰法)第六章第六章 自旋与全同粒子自旋与全同粒子返回返回(一)(一)Stern-Gerlach Stern-Gerlach 实验实验 (二)光谱线精细结构二)光谱线精细结构(三)电子自旋假设(三)电子自旋假设(四)回转
2、磁比率(四)回转磁比率1 1 电子的自旋电子的自旋返回返回(1 1)实验描述)实验描述Z处于处于 S S 态的态的氢原子氢原子(2 2)结论)结论I I。氢原子有磁矩。氢原子有磁矩 因在非均匀磁场中发生偏转因在非均匀磁场中发生偏转IIII。氢原子磁矩只有两种取向。氢原子磁矩只有两种取向 即空间量子化的即空间量子化的S S 态的氢原子束流,经非均匀磁场态的氢原子束流,经非均匀磁场发生偏转,在感光板上呈现两条分立线。发生偏转,在感光板上呈现两条分立线。NS(一)(一)Stern-Gerlach Stern-Gerlach 实验实验(3 3)讨论)讨论磁矩与磁磁矩与磁场之夹角场之夹角原子原子 Z Z
3、 向受力向受力分析分析若原子磁矩可任意取向,若原子磁矩可任意取向,则则 cos cos 可在可在 (-1-1,+1+1)之间连续变化,)之间连续变化,感光板将呈现连续带感光板将呈现连续带但是实验结果是:出现的两条分立线对应但是实验结果是:出现的两条分立线对应 cos cos =-1 =-1 和和 +1+1,处于,处于 S S 态的氢原子态的氢原子 =0=0,没有轨道,没有轨道磁矩,所以原子磁矩来自于电子的固有磁矩,即自旋磁矩。磁矩,所以原子磁矩来自于电子的固有磁矩,即自旋磁矩。3p3s58933p3/23p1/23s1/2D1D258965890钠原子光谱中的钠原子光谱中的一条亮黄线一条亮黄线
4、 58935893,用高分辨率的光谱仪观用高分辨率的光谱仪观测,可以看到该谱线其测,可以看到该谱线其实是由靠的很近的两条实是由靠的很近的两条谱线组成。谱线组成。其他原子光谱中其他原子光谱中也可以发现这种谱线由更也可以发现这种谱线由更细的一些线组成的现象,细的一些线组成的现象,称之为光谱线的精细结构。称之为光谱线的精细结构。该现象只有考虑了电子的该现象只有考虑了电子的自旋才能得到解释自旋才能得到解释(二)光谱线精细结构(二)光谱线精细结构Uhlenbeck Uhlenbeck 和和 Goudsmit 1925Goudsmit 1925年根据上述现象提出了年根据上述现象提出了电子自旋假设电子自旋假
5、设(1 1)每个电子都具有自旋角动量,它在空间任何方向上)每个电子都具有自旋角动量,它在空间任何方向上的投影只能取两个数值:的投影只能取两个数值:(2 2)每个电子都具有自旋磁矩,它与自旋角动量的关系为:)每个电子都具有自旋磁矩,它与自旋角动量的关系为:自旋磁矩,在空间任何方向上的投影只能取两个数值:自旋磁矩,在空间任何方向上的投影只能取两个数值:Bohr Bohr 磁子磁子(三)电子自旋假设(三)电子自旋假设(1 1)电子回转磁比率)电子回转磁比率我们知道,轨道角动量与轨道磁矩的关系是:我们知道,轨道角动量与轨道磁矩的关系是:(2 2)轨道回转磁比率)轨道回转磁比率则,轨道回转磁比率为:则,
6、轨道回转磁比率为:可见可见电子回转磁比率是轨道电子回转磁比率是轨道回转磁比率的二倍回转磁比率的二倍(四)回转磁比率(四)回转磁比率2 2 电子的自旋算符和自旋波函数电子的自旋算符和自旋波函数返回返回(一)自旋算符(一)自旋算符 (二)含自旋的状态波函数(二)含自旋的状态波函数 (三)自旋算符的矩阵表示与(三)自旋算符的矩阵表示与 Pauli Pauli 矩阵矩阵 (四)含自旋波函数的归一化和几率密度(四)含自旋波函数的归一化和几率密度 (五)自旋波函数(五)自旋波函数 (六)力学量平均值(六)力学量平均值自旋角动量是纯量子概念,它不可能用经典力学来解释。自旋角动量也是一个力学量,但是它和其他力
7、学量有着根本的差别通常的力学量都可以表通常的力学量都可以表示为坐标和动量的函数示为坐标和动量的函数而自旋角动量则与电子的坐标和动量无关,它是电子内部状态而自旋角动量则与电子的坐标和动量无关,它是电子内部状态的表征,是描写电子状态的第四个自由度(第四个变量)。的表征,是描写电子状态的第四个自由度(第四个变量)。与其他力学量一样,自旋角动量与其他力学量一样,自旋角动量 也是用一个算符描写,记为也是用一个算符描写,记为自旋角动量自旋角动量 轨道角动量轨道角动量 异同点异同点与坐标、动量无关与坐标、动量无关不适用不适用同是角动量同是角动量满足同样的角动量对易关系满足同样的角动量对易关系(一)自旋算符(
8、一)自旋算符由于由于自旋角动量自旋角动量在空间任意方向上的投影只能取在空间任意方向上的投影只能取 /2/2 两个值两个值所以所以的本征值都是的本征值都是/2/2,其平方为,其平方为 /2/22 2算符的本征值是算符的本征值是仿照仿照自旋量子数自旋量子数 s s 只有一个数值只有一个数值因为自旋是电子内部运动自由度,所以描写电子运动除了用因为自旋是电子内部运动自由度,所以描写电子运动除了用 (x,y,z)(x,y,z)三个坐三个坐标变量外,还需要一个自旋变量标变量外,还需要一个自旋变量 (S(SZ Z),于是电子的含自旋的波函数需写为:),于是电子的含自旋的波函数需写为:由于由于 S SZ Z
9、只取只取 /2/2 两个值,两个值,所以上式可写为两个分量:所以上式可写为两个分量:写成列矩阵写成列矩阵规定列矩阵规定列矩阵 第一行对应于第一行对应于S Sz z=/2/2,第二行对应于第二行对应于S Sz z=-=-/2/2。若已知电子处于若已知电子处于S Sz z=/2/2或或S Sz z=-=-/2/2的的自旋态,则波函数可分别写为:自旋态,则波函数可分别写为:(二)含自旋的状态波函数(二)含自旋的状态波函数(1 1)SZ的矩阵形式的矩阵形式电子自旋算符(如电子自旋算符(如S SZ Z)是作用与电子自旋)是作用与电子自旋波函数上的,既然电子波函数表示成了波函数上的,既然电子波函数表示成了
10、2 21 1 的列矩阵,那末,电子自旋算符的矩的列矩阵,那末,电子自旋算符的矩阵表示应该是阵表示应该是 2 22 2 矩阵。矩阵。因为因为1/2 1/2 描写的态,描写的态,S SZ Z有确定值有确定值 /2/2,所以,所以1/2 1/2 是是 S SZ Z 的本征态,本征值为的本征态,本征值为 /2/2,即有:即有:矩阵形式矩阵形式同理对同理对1/2 处理,有处理,有最后得最后得 S SZ Z 的的矩阵形式矩阵形式S SZ Z 是对角矩阵,对角矩阵是对角矩阵,对角矩阵元是其本征值元是其本征值/2/2。(三)自旋算符的矩阵表示与(三)自旋算符的矩阵表示与 Pauli Pauli 矩阵矩阵(2
11、2)Pauli Pauli 算符算符1.Pauli 算符的引进算符的引进分量分量形式形式因为因为S Sx x,S,Sy y,S,Sz z的本征值都是的本征值都是/2/2,所以所以x x,y y,z z的本征值都是的本征值都是1 1;x x2 2,y y2 2,Z Z2 2 的本征值都是的本征值都是 。即:即:2.2.反对易关系反对易关系基于基于的对易关系,可以证明的对易关系,可以证明 各分量之间满足反对易关系各分量之间满足反对易关系:证:证:我们从对易关系我们从对易关系:出发出发左乘左乘y y右乘右乘y y二式相加二式相加同理可证同理可证:x,y 分量的反对易分量的反对易关系亦成立关系亦成立.
12、证毕证毕 或或由对易关系和反对易关系还由对易关系和反对易关系还可以得到关于可以得到关于 Pauli Pauli 算符算符的如下非常有用性质:的如下非常有用性质:y2=13.Pauli3.Pauli算符的矩阵形式算符的矩阵形式根据定义根据定义求求 Pauli 算符的算符的 其他两个分量其他两个分量令令利用反对易利用反对易关系关系X 简化为:简化为:令:令:c=expi c=expi(为实),则为实),则由力学由力学量算符量算符厄密性厄密性得:得:b=c*(或或c=b*)x2=I求求y 的矩阵形式的矩阵形式这里有一个相位不定性,习惯上取这里有一个相位不定性,习惯上取=0=0,于是得到于是得到 Pa
13、uli Pauli 算符的矩阵形式为:算符的矩阵形式为:从自旋算符与从自旋算符与 Pauli Pauli 矩阵的关系自然得到自旋算符的矩阵表示:矩阵的关系自然得到自旋算符的矩阵表示:写成矩阵形式写成矩阵形式(1 1)归一化)归一化电 子 波 函电 子 波 函数表示成数表示成矩阵形矩阵形式后,式后,波函数的归一化时必须同时对自旋求和和对空间坐标积分,即波函数的归一化时必须同时对自旋求和和对空间坐标积分,即(2 2)几率密度)几率密度表示表示 t t 时刻在时刻在 r r 点附近点附近 单位体积内找到电子的几率单位体积内找到电子的几率表示表示 t t 时刻时刻 r r 点处点处 单位体积内找到自旋
14、单位体积内找到自旋 S Sz z=/2/2的电子的几率的电子的几率表示表示 t t 时刻时刻 r r 点处单位点处单位 体积内找到体积内找到 自旋自旋 S Sz z=/2/2 的电子的几率的电子的几率在全空间找在全空间找到到Sz=/2的的电子的几率电子的几率在全空间找到在全空间找到 Sz=/2 的电子的几率的电子的几率(四)含自旋波函数的归一化和几率密度(四)含自旋波函数的归一化和几率密度波函数波函数这是因为,通常自旋和轨道运动之间是有相互作用的,所以电子的自旋状态对这是因为,通常自旋和轨道运动之间是有相互作用的,所以电子的自旋状态对轨道运动有影响。但是,当这种相互作用很小时,可以将其忽略,则
15、轨道运动有影响。但是,当这种相互作用很小时,可以将其忽略,则1 1,2 2 对对 (x,y,z)(x,y,z)的依赖一样,即函数形式是相同的。此时的依赖一样,即函数形式是相同的。此时可以写成如下形式:可以写成如下形式:求:自旋波函数求:自旋波函数(S(Sz z)S SZ Z 的本征方程的本征方程令令一般情况下,一般情况下,1 1 2 2,二者对,二者对(x,y,z)(x,y,z)的依赖是不一样的。的依赖是不一样的。(五)自旋波函数(五)自旋波函数因为因为 S Sz z 是是 2 2 2 2 矩阵,所以在矩阵,所以在 S S2 2,S,Sz z 为对角矩阵的表为对角矩阵的表象内,象内,1/21/
16、2,-1/2 -1/2 都应是都应是 2 21 1 的列矩阵。的列矩阵。代入本征方程得:代入本征方程得:由归一化条件确定由归一化条件确定a a1 1所以所以二者是属于不同本征值的本征函数,彼此应该正交二者是属于不同本征值的本征函数,彼此应该正交引进自旋后,任一自旋算符的函数引进自旋后,任一自旋算符的函数 G G 在在 S Sz z 表象表示为表象表示为2 22 2矩阵矩阵算符算符 G G 在任意态在任意态中对自旋求平均的平均值中对自旋求平均的平均值算符算符 G G 在在 态中对坐标和自旋同时求平均的平均值是:态中对坐标和自旋同时求平均的平均值是:(六)力学量平均值(六)力学量平均值3 3 简单
17、塞曼效应简单塞曼效应返回返回(一)实验现象(一)实验现象(二)氢、类氢原子在外场中的附加能(二)氢、类氢原子在外场中的附加能(三)求解(三)求解 Schrodinger 方程方程(四)(四)简单塞曼效应简单塞曼效应塞曼效应:塞曼效应:氢原子和类氢原子在外磁场中,其光谱线发生分氢原子和类氢原子在外磁场中,其光谱线发生分裂的现象。裂的现象。该现象在该现象在18961896年被年被ZeemanZeeman首先首先 观察到观察到(1 1)简单塞曼效应:简单塞曼效应:在强磁场作用下,光谱线的分裂在强磁场作用下,光谱线的分裂现象。现象。(2 2)复杂塞曼效应:复杂塞曼效应:当外磁场较弱,轨道当外磁场较弱,
18、轨道-自旋相互作自旋相互作用不能忽略时,将产生复杂塞曼效应。用不能忽略时,将产生复杂塞曼效应。(一)实验现象(一)实验现象取外磁场方向沿取外磁场方向沿 Z 向,则磁场引起的附加能(向,则磁场引起的附加能(CGS 制)为:制)为:磁场沿磁场沿 Z Z 向向(二)(二)Schrodinger 方程方程考虑强磁场忽略自旋考虑强磁场忽略自旋-轨道相互作用,体系轨道相互作用,体系Schrodinger 方程:方程:(二)氢、类氢原子在外场中的附加能(二)氢、类氢原子在外场中的附加能根据上节分析,没有自旋根据上节分析,没有自旋-轨道相互作用的波函数可写成:轨道相互作用的波函数可写成:代入代入 S方程方程最
19、后得最后得 1 满足的方程满足的方程同理得同理得 2 满满足的方程足的方程(1)当当 B=0 时(无外场),是有心力场问题,方程退化为时(无外场),是有心力场问题,方程退化为不考虑自旋时的情况。其解为:不考虑自旋时的情况。其解为:I。对氢原子情况对氢原子情况II。对类氢原子情况。对类氢原子情况如如 Li,Na,等碱金属原子,核外电子对核库仑场有屏蔽等碱金属原子,核外电子对核库仑场有屏蔽作用,此时能级不仅与作用,此时能级不仅与 n 有关,而且与有关,而且与 有关,记为有关,记为E n 则有心力场则有心力场方程可写为:方程可写为:(三)求解(三)求解 Schrodinger Schrodinger
20、 方程方程由于由于(2)当当 B 0 时(有外场)时时(有外场)时所以在外磁场下,所以在外磁场下,n m 仍为方程的解,此时仍为方程的解,此时同理同理(1)分析能级公式可知:在外磁场下,能级与)分析能级公式可知:在外磁场下,能级与 n,l,m 有关。原有关。原来来 m 不同能量相同的简并现象被外磁场消除了。不同能量相同的简并现象被外磁场消除了。(2)外磁场存在时,能量与自旋状态有关。当原子处于)外磁场存在时,能量与自旋状态有关。当原子处于 S 态时,态时,l=0,m=0 的原能级的原能级 En l 分裂为二。分裂为二。这正是这正是 SternGerlach 实验所观察到的现象。实验所观察到的现
21、象。(四)(四)简单简单塞曼效应塞曼效应(3)光谱线分裂)光谱线分裂2p1sSz=/2Sz=-/2m+10-1m+10-100(a)无外磁场无外磁场(b)有外磁场有外磁场I。B=0 无外磁场时无外磁场时电子从电子从 En 到到 En 的跃迁的谱线频率为:的跃迁的谱线频率为:II。B 0 有外磁场时有外磁场时 根据上一根据上一章选择定则章选择定则可知,可知,所以谱线所以谱线角频率可角频率可取三值:取三值:无磁场无磁场时的一时的一条谱线条谱线被分裂被分裂成三条成三条谱线谱线Sz=/2 时,取时,取+;Sz=/2 时,取时,取 。我们已分别讨论过了只有我们已分别讨论过了只有 L L 和只有和只有 S
22、 S 的情的情况,忽略了二者之间的相互作用,实际上,在二者况,忽略了二者之间的相互作用,实际上,在二者都存在的情况下,就必须同时考虑轨道角动量和自都存在的情况下,就必须同时考虑轨道角动量和自旋,也就是说,需要研究旋,也就是说,需要研究 L L 与与 S S 的耦合问题。下的耦合问题。下面我们普遍讨论一下两个角动量的耦合问题。面我们普遍讨论一下两个角动量的耦合问题。(一)总角动量(一)总角动量 (二)耦合表象和无耦合表象(二)耦合表象和无耦合表象4 4 两个角动量耦合两个角动量耦合返回返回设有设有 J1,J2 两个角动量,分别满足如下角动量对易关系:两个角动量,分别满足如下角动量对易关系:因为二
23、者是相互独立的角动量因为二者是相互独立的角动量,所以相互对易,即,所以相互对易,即其分量其分量 对易关系可写为对易关系可写为证:证:同理,对其他分量成立。同理,对其他分量成立。证毕证毕(1)二角动量之和)二角动量之和构成总角动量构成总角动量(一)总角动量(一)总角动量证:证:同理,对其他分量亦满足。同理,对其他分量亦满足。事实上这是意料之中的事,因为凡是满足角动量定义事实上这是意料之中的事,因为凡是满足角动量定义的力学量都满足如下对易关系:的力学量都满足如下对易关系:证:证:上面最后一步证明中,上面最后一步证明中,使用了如下对易关系:使用了如下对易关系:同理可证同理可证成立。成立。证毕证毕由上
24、面证明过程可以看出,若对易括号将由上面证明过程可以看出,若对易括号将 J J1 12 2用用J J1 1代替,显然有如下关系:代替,显然有如下关系:这是这是因为因为证:证:同理同理亦成立。亦成立。证毕证毕 所以这四个角动量算符有共同的正所以这四个角动量算符有共同的正交归一完备的本征函数系。记为:交归一完备的本征函数系。记为:综合上述对易关系可综合上述对易关系可知:四个角动量算符知:四个角动量算符两两两两对易对易(1 1)本征函数)本征函数也两两对易,故也有共同完也两两对易,故也有共同完备的本征函数系,记为:备的本征函数系,记为:耦合耦合 表象表象 基矢基矢非耦合表象基矢非耦合表象基矢(二)耦合
25、表象和无耦合表象(二)耦合表象和无耦合表象由于这两组基矢都是正交归一完备的,所以可以相互表示,即:由于这两组基矢都是正交归一完备的,所以可以相互表示,即:称为矢量耦合系数称为矢量耦合系数 或或 Clebsch-Gorldon 系数系数因为因为所以有所以有于是上式求和只需对于是上式求和只需对 m m2 2 进行即可。考虑到进行即可。考虑到 m m1 1=m-m=m-m2 2,则上式可改写为:,则上式可改写为:或:或:(2)C-G系数的么正性系数的么正性我们知道,两个表象之间的么正变换有一个相位不定性,如果取我们知道,两个表象之间的么正变换有一个相位不定性,如果取适当的相位规定,就可以使适当的相位
26、规定,就可以使C-GC-G系数为实数。系数为实数。共轭式共轭式将上式左乘将上式左乘j 用耦合表象基矢用耦合表象基矢|j|j1 1,j,j2 2,j,m,j,m 展开:展开:C-GC-G系数系数 实数性实数性共轭式共轭式左乘上式,并注意非耦合表象基矢的正交归一性:左乘上式,并注意非耦合表象基矢的正交归一性:对对 m m2 2=m=m2 2 情况情况,得:得:考虑到上式两个考虑到上式两个C-GC-G系数中总磁量子数与分量子数之间的关系:系数中总磁量子数与分量子数之间的关系:m m2 2=m-m=m-m1 1 和和 m m2 2=m-m=m-m1 1 最后得:最后得:上式与关系式上式与关系式一起反映
27、了一起反映了C-GC-G系数的么正性和实数性。系数的么正性和实数性。(3 3)j j的取值范围(的取值范围(j j与与j j1 1,j,j2 2的关系)的关系)1.1.对给定对给定j j1 1 j j2 2,求,求 j jmaxmax因为因为m mm m1 1 m m2 2 取值范围分别是:取值范围分别是:m=j,j-1,.,-j+1,-j mm=j,j-1,.,-j+1,-j mmaxmax=j;=j;m m1 1=j=j1 1,j,j1 1-1,.,-j-1,.,-j1 1+1,-j+1,-j1 1 (m (m1 1)maxmax=j=j1 1;m m2 2=j=j2 2,j,j2 2-1
28、,.,-j-1,.,-j2 2+1,-j+1,-j2 2 (m (m2 2)maxmax=j=j2 2;再考虑到再考虑到m=mm=m1 1+m+m2 2,则有:,则有:m mmaxmax=(m=(m1 1)maxmax+(m+(m2 2)maxmax=j=j=j=jmaxmax,于是:于是:j jma x ma x=j=j1 1 +j+j2 22.2.求求 j jminmin由于基矢由于基矢|j|j1 1 m m1 1,|j,|j2 2 m m2 2 对给定的对给定的j j1 1 j j2 2分别有分别有2j2j1 1+1+1和和2j2j2 2+1+1个,个,所以非耦合表象的基矢所以非耦合表象
29、的基矢|j|j1 1,m,m1 1,j,j2 2,m,m2 2=|j=|j1 1,m,m1 1|j|j2 2,m,m2 2 的数目为的数目为(2j(2j1 1+1)(2j+1)(2j2 2+1)+1)个个 。另一方面,对于一个另一方面,对于一个 j j 值,值,|j|j1 1,j,j2 2,j,m ,j,m 基矢有基矢有 2j+12j+1个,个,那末那末 j j 从从 j jmin min 到到 j jmax max 的所有基矢数则由下式给出:的所有基矢数则由下式给出:等差级数求和公式等差级数求和公式Jmax=j1+j2由于非耦合表象基矢和耦合表象基矢是相互独立的,等式两边基矢数应该由于非耦合
30、表象基矢和耦合表象基矢是相互独立的,等式两边基矢数应该相等,所以耦合表象基矢相等,所以耦合表象基矢|j|j1 1,j,j2 2,j,m,j,m 的数亦应等于的数亦应等于(2j(2j1 1+1)(2j+1)(2j2 2+1)+1)个,个,从非耦合表象到耦合表象的变换由下式给出从非耦合表象到耦合表象的变换由下式给出:等式两边基矢数应该相等等式两边基矢数应该相等于是于是 (j(j1 1+j+j2 2+1)+1)2 2-j-jminmin2 2=(2j=(2j1 1+1)(2j+1)(2j2 2+1)+1)从而可解得:从而可解得:j jminmin=|j=|j1 1-j-j2 2|。3.j 3.j 的
31、取值范围的取值范围由于由于 j j 只取只取 0 0 的数,所以当的数,所以当 j j1 1 j j2 2 给定后,给定后,j j 的可能取值由的可能取值由下式给出:下式给出:j=jj=j1 1+j+j2 2,j,j1 1+j+j2 2-1,j-1,j1 1+j+j2 2-2,.,|j-2,.,|j1 1-j-j2 2|.|.该结论与旧量子论中角动量求和规则相符合。该结论与旧量子论中角动量求和规则相符合。j j1 1,j,j2 2 和和 j j 所满足所满足的上述关系称为三角形关系,表示为的上述关系称为三角形关系,表示为(j(j1 1,j,j2 2,j),j)。求得求得 j,m j,m 后,后
32、,J J2 2,J,Jz z 的本征值问题就得到解决。的本征值问题就得到解决。本征矢本征矢作为一个例子下面列出了电子自旋角动量作为一个例子下面列出了电子自旋角动量j j2 2=1/2=1/2情况下几情况下几个个C-GC-G系数公式。系数公式。将这些系数代入本征矢表达式可得:将这些系数代入本征矢表达式可得:(一)复习类氢原子能谱(无自旋轨道作用)(一)复习类氢原子能谱(无自旋轨道作用)(二)有自旋轨道相互作用情况(二)有自旋轨道相互作用情况(1 1)无耦合表象)无耦合表象(2 2)耦合表象)耦合表象(1 1)HamiltonHamilton量量(2 2)微扰法求解)微扰法求解(3 3)光谱精细结
33、构)光谱精细结构(4 4)零级近似波函数)零级近似波函数本节讨论无外场作用下,考虑电子自旋对类氢原子能级本节讨论无外场作用下,考虑电子自旋对类氢原子能级和谱线的影响。和谱线的影响。5 5 光谱精细结构光谱精细结构返回返回(1 1)无耦合表象)无耦合表象类氢原子类氢原子Hamilton量量对类氢原子在不对类氢原子在不考虑核外电子对考虑核外电子对核电得屏蔽效应核电得屏蔽效应情况下,势场可情况下,势场可写为:写为:因为因为 H H0 0,L,L2 2,L,Lz z 和和 S Sz z 两两对易,两两对易,所以它们有共同完备得本征函数(无耦合表象基矢):所以它们有共同完备得本征函数(无耦合表象基矢):
34、可见电子状态由可见电子状态由 n,l,mn,l,ml l,m,ms s 四个量子数确定,四个量子数确定,能级能级公式公式只与只与 n 有关有关能级简并度,不计电子自旋时,是能级简并度,不计电子自旋时,是 n n2 2 度简并,度简并,考虑电子自旋后,因考虑电子自旋后,因 m ms s 有二值,故有二值,故 E En n 是是 2n2n2 2 度简并。度简并。(一)复习类氢原子能谱(无自旋轨道作用)(一)复习类氢原子能谱(无自旋轨道作用)(2 2)耦合表象)耦合表象电子总角动量电子总角动量因为因为 L L2 2,S,S2 2,J,J2 2,J,Jz z 两两对两两对易且与易且与 H H0 0 对
35、易,故体系定态也对易,故体系定态也可写成它们得共同本征函数:可写成它们得共同本征函数:耦合表象基矢耦合表象基矢电子状态电子状态 用用 n,l,j,m n,l,j,m 四个量子四个量子 数确定。数确定。(1 1)Hamilton Hamilton 量量基于相对论量子力学和实基于相对论量子力学和实验依据,验依据,L-SL-S自旋轨道作用自旋轨道作用可以表示为:可以表示为:称为自旋称为自旋 轨道耦合项轨道耦合项(二)有自旋轨道相互作用情况(二)有自旋轨道相互作用情况于是体系于是体系HamiltonHamilton量量由于由于 H H 中包含有自旋中包含有自旋-轨道耦合项,所以轨道耦合项,所以 L L
36、z z,S,Sz z与与 H H 不不再对易。二者不再是守恒量,相应的量子数再对易。二者不再是守恒量,相应的量子数 m ml l,m,ms s都不是好量子都不是好量子数了,不能用以描写电子状态。数了,不能用以描写电子状态。现在好量子数是现在好量子数是 l,j,m l,j,m,这是因为其相应的力学量算符,这是因为其相应的力学量算符 L L2 2,J,J2 2,J,Jz z 都与都与 H H 对易的缘故。对易的缘故。证:证:所以所以 L L2 2,J,J2 2,J,Jz z 都与都与 HH对易从而也与对易从而也与 H H 对易。对易。(2 2)微扰法求解)微扰法求解因为因为 H H0 0的本征值是
37、简并的,的本征值是简并的,因此需要使用简并微扰法因此需要使用简并微扰法求解。求解。H H0 0 的波函数有两套:耦合表象波函数和非耦合表象波函数。的波函数有两套:耦合表象波函数和非耦合表象波函数。为 方 便 计,我 们 选 取 耦 合 表 象 波 函 数 作 为 零 级 近 似 波 函 数。为 方 便 计,我 们 选 取 耦 合 表 象 波 函 数 作 为 零 级 近 似 波 函 数。之所以方便,是因为微扰之所以方便,是因为微扰 Hamilton Hamilton 量量 HH在耦合表在耦合表象矩阵是对角化的,而简并微扰法解久期方程的本质就是寻找正确的零象矩阵是对角化的,而简并微扰法解久期方程的
38、本质就是寻找正确的零级波函数是级波函数是 HH对角化。这样我们就可以省去求解久期方程的步骤。对角化。这样我们就可以省去求解久期方程的步骤。令:令:展开系数满足如下方程:展开系数满足如下方程:其中其中 矩阵元矩阵元下面我们计算此矩阵元下面我们计算此矩阵元其中:其中:代入关于代入关于Cljm的方的方程得:程得:为书写简捷将为书写简捷将 ljlj m m用用 l j m l j m 代替代替由于由于 C Cljm ljm 0 0,所以能量一所以能量一级修正级修正(3 3)光谱精细结构)光谱精细结构1.1.简并性简并性由上式给出的能量一级修正可以看出,由上式给出的能量一级修正可以看出,L-SL-S耦合
39、使耦合使原来简并能级分裂开来,简并消除,但是是部分原来简并能级分裂开来,简并消除,但是是部分消除。这是因为消除。这是因为 E Enljnlj(1)(1)仍与仍与 m m 无关,同一无关,同一j j值,值,m m 可取可取 2j+12j+1个值,所以还有个值,所以还有 2j+12j+1度简并。度简并。2.精细结构精细结构对给定的对给定的 n,n,值,值,j=j=(1/2)(1/2)有二值有二值 =0=0除外除外具有相同具有相同 n,n,的能级有二个的能级有二个由于由于(r)(r)通常很小,通常很小,所以这二个能级间距所以这二个能级间距很小,这就是产生精很小,这就是产生精细结构的原因。细结构的原因
40、。例例:钠原子钠原子 2p 2p 项精细结构项精细结构 求求 58905896钠原子钠原子 2P 项的精细结构项的精细结构关于上式积分具体计算参见关于上式积分具体计算参见 E.U.Condon and G.H.E.U.Condon and G.H.Shortley,The Theory of Atomic Spectra,p.120-125.Shortley,The Theory of Atomic Spectra,p.120-125.原能级分裂为:原能级分裂为:n,j=+1/2j=1/2(4)零级近似波函数)零级近似波函数波函数的零级近似取为波函数的零级近似取为 nljm nljm 对不同对
41、不同 m m 的线性组合,也可以的线性组合,也可以就直接取为就直接取为 nljm nljm 因为微扰因为微扰 Hamilton Hamilton 量量 HH在该态的矩阵元在该态的矩阵元已是对角化的了。已是对角化的了。上述波函数是耦合表象基矢,表示成相应的上述波函数是耦合表象基矢,表示成相应的 Dirac Dirac 符号后符号后并用非耦合表象基矢表示出来。并用非耦合表象基矢表示出来。上述讨论适用于上述讨论适用于 0 0的情况,当的情况,当 =0=0时,没有自旋轨道耦合时,没有自旋轨道耦合作用,因而能级不发生移动。作用,因而能级不发生移动。作作 业业周世勋周世勋 量子力学教程量子力学教程 7.2
42、、7.4、7.5、7.7 曾谨言曾谨言 量子力学导论量子力学导论 8.1、8.5、8.6、9.6(一)全同粒子和全同性原理(一)全同粒子和全同性原理 (二)波函数的对称性质(二)波函数的对称性质 (三)波函数对称性的不随时间变化(三)波函数对称性的不随时间变化 (四)(四)Fermi Fermi 子和子和 Bose Bose 子子6 全同粒子的特性全同粒子的特性返回返回(1 1)全同粒子)全同粒子质量、电荷、自旋等固有性质完全相同的微观粒子。电荷、自旋等固有性质完全相同的微观粒子。(2)经典粒子的可区分性)经典粒子的可区分性经典力学中,固有性质完全相同的两个粒子,是可以区分的。经典力学中,固有
43、性质完全相同的两个粒子,是可以区分的。因为二粒子在运动中,有各自确定的轨道,在任意时刻都有因为二粒子在运动中,有各自确定的轨道,在任意时刻都有确定的位置和速度。确定的位置和速度。可判断哪个是第一个粒子哪个是第二个粒子可判断哪个是第一个粒子哪个是第二个粒子1212(一)全同粒子和全同性原理(一)全同粒子和全同性原理(3)微观粒子的不可区分性)微观粒子的不可区分性微观粒子运动微观粒子运动服从服从量子力学量子力学用用波函数描写波函数描写在波函数重叠区在波函数重叠区 粒子是不可区分的粒子是不可区分的(4)全同性原理)全同性原理全同粒子所组成的体系中,二全同粒子全同粒子所组成的体系中,二全同粒子互相代换
44、不引起体系物理状态的改变。互相代换不引起体系物理状态的改变。全同性原理是量子力学的基本原理之一。全同性原理是量子力学的基本原理之一。(1)Hamilton 算符的对称性算符的对称性N 个全同粒子组成的体系,其个全同粒子组成的体系,其Hamilton 量为:量为:调换第调换第 i 和第和第 j 粒子,粒子,体系体系 Hamilton 量不变。量不变。即:即:表明,表明,N 个全同粒子组成的体系的个全同粒子组成的体系的Hamilton 量具有交换对称性,量具有交换对称性,交换任意两个粒子坐标(交换任意两个粒子坐标(q i,q j)后不变。后不变。(二)波函数的对称性质(二)波函数的对称性质(2)对
45、称和反对称波函数)对称和反对称波函数考虑全同粒子体系的含时考虑全同粒子体系的含时 Shrodinger 方程方程将方程中(将方程中(q i,q j)调换,得:调换,得:由于由于 Hamilton 量对于量对于(q i,q j)调换调换 不变不变表明:表明:(q i,q j)调换前后的波函数都是调换前后的波函数都是Shrodinger 方程的解。方程的解。根据全同根据全同性原理:性原理:描写同一状态。描写同一状态。因此,二者相差一常数因子。因此,二者相差一常数因子。再做一次(再做一次(q i,q j)调换调换对称波函数对称波函数反对称波函数反对称波函数引入粒引入粒子坐标子坐标交换算交换算符符全同
46、粒子体系波函数的这种对称性不随时间变化,即全同粒子体系波函数的这种对称性不随时间变化,即初始时刻是对称的,以后时刻永远是对称的;初始时刻是对称的,以后时刻永远是对称的;初始时刻是反对称的,以后时刻永远是反对称的。初始时刻是反对称的,以后时刻永远是反对称的。证证方法方法 I 设全同粒子体系波函数设全同粒子体系波函数 s 在在 t 时刻是对称的,由体系时刻是对称的,由体系哈密顿量是对称的,所以哈密顿量是对称的,所以 H s 在在t 时刻也是对称的。时刻也是对称的。在在 t+dt 时刻,波函数变化为时刻,波函数变化为对称对称对称对称二对称波函二对称波函数之和仍是数之和仍是对称的对称的依次类推,在以后
47、任何时刻,波函数都是对称的。依次类推,在以后任何时刻,波函数都是对称的。同理可证:同理可证:t 时刻是反对称的波函数时刻是反对称的波函数 a,在,在t 以后任何时刻都是反对称的。以后任何时刻都是反对称的。(三)波函数对称性的不随时间变化(三)波函数对称性的不随时间变化方法方法 II 全同粒子体系哈全同粒子体系哈密顿量是对称的密顿量是对称的结论:结论:描写全同粒子体系状态的波函数只能是对称的或反对称的,描写全同粒子体系状态的波函数只能是对称的或反对称的,其对称性不随时间改变。如果体系在某一时刻处于对称(或其对称性不随时间改变。如果体系在某一时刻处于对称(或反对称)态上,则它将永远处于对称(或反对
48、称)态上。反对称)态上,则它将永远处于对称(或反对称)态上。实验表明:对于每一种粒子,它们的多粒子波函数的交换对称性是完实验表明:对于每一种粒子,它们的多粒子波函数的交换对称性是完全确定的,而且该对称性与粒子的自旋有确定的联系。全确定的,而且该对称性与粒子的自旋有确定的联系。(1)Bose 子子凡自旋为凡自旋为 整数倍(整数倍(s=0,1,2,)的粒子,其多粒子波函数的粒子,其多粒子波函数对于交换对于交换 2 个粒子总是对称的,遵从个粒子总是对称的,遵从Bose统计,故称为统计,故称为 Bose 子子如:如:光子光子(s=1););介子介子(s=0)。)。(四)(四)Fermi Fermi 子
49、和子和 Bose Bose 子子(2)Fermi 子子凡自旋为凡自旋为 半奇数倍(半奇数倍(s=1/2,3/2,)的粒子,其多粒子波函数对的粒子,其多粒子波函数对于交换于交换 2 个粒子总是反对称的,遵从个粒子总是反对称的,遵从Fermi 统计,故称为统计,故称为Fermi 子。子。例如:电子、质子、中子(例如:电子、质子、中子(s=1/2)等粒子。)等粒子。(3)由)由“基本粒子基本粒子”组成的复杂粒子组成的复杂粒子如:如:粒子(氦核)或其他原子核。粒子(氦核)或其他原子核。如果在所讨论或过程中,内部状态保持不变,即内部自如果在所讨论或过程中,内部状态保持不变,即内部自由度完全被冻结,则全同
50、概念仍然适用,可以作为一类由度完全被冻结,则全同概念仍然适用,可以作为一类全同粒子来处理。全同粒子来处理。偶数个偶数个 Fermi 子组成子组成Bose 子组成子组成奇数个奇数个 Fermi子组成子组成奇数个奇数个 Fermi子组成子组成(一)(一)2 2 个全同粒子波函数个全同粒子波函数 (二)(二)N N 个全同粒子体系波函数个全同粒子体系波函数 (三)(三)Pauli Pauli 原理原理7 全同粒子体系波函数全同粒子体系波函数Pauli 原理原理返回返回(1)对称和反对称波函数的构成)对称和反对称波函数的构成I 2 个全同粒子个全同粒子Hamilton 量量II 单粒子波函数单粒子波函