欢迎来到163文库! | 帮助中心 精品课件PPT、教案、教学设计、试题试卷、教学素材分享与下载!
163文库
全部分类
  • 办公、行业>
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 中职>
  • 大学>
  • 各类题库>
  • ImageVerifierCode 换一换
    首页 163文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    广东工业大学课件.ppt

    • 文档编号:5041994       资源大小:573.50KB        全文页数:16页
    • 资源格式: PPT        下载积分:19文币     交易提醒:下载本文档,19文币将自动转入上传用户(晟晟文业)的账号。
    微信登录下载
    快捷注册下载 游客一键下载
    账号登录下载
    二维码
    微信扫一扫登录
    下载资源需要19文币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    优惠套餐(点此详情)
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、试题类文档,标题没说有答案的,则无答案。带答案试题资料的主观题可能无答案。PPT文档的音视频可能无法播放。请谨慎下单,否则不予退换。
    3、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者搜狗浏览器、谷歌浏览器下载即可。。

    广东工业大学课件.ppt

    1、数据挖掘数据挖掘滕少华滕少华 广东工业大学广东工业大学协同计算与知识工程协同计算与知识工程9.4 基于内容的垃圾邮件识别n9.4.1 垃圾邮件识别方法简介n9.4.2 基于内容的垃圾邮件识别方法工作原理n9.4.3 一种基于聚类的垃圾邮件识别方法2023-2-59.4.1 垃圾邮件识别方法简介n主流的垃圾邮件识别技术可分为邮件服务器端防范技术和邮件客户端防范技术两大类n邮件服务器端防范技术:n基于IP地址、域名和“(黑)白名单”过滤技术;n基于信头、信体、附件的内容过滤技术;基于信头、信体、附件的内容过滤技术;n基于连接频率的动态规则技术;n邮件客户端防范技术:n充分利用黑名单,白名单功能;n

    2、慎用“自动回复”功能;尽量避免泄露邮件地址;2023-2-5基于内容的垃圾邮件识别技术n基于内容的垃圾邮件识别技术是邮件服务器端防范技术的主流技术,以上提到的基于信头、信体、附件的内容过滤技术是典型的基于内容的方法n这类型方法的典型代表有Bayes方法、kNN、支持向量机SVM、Rocchio、神经网络等2023-2-59.4.2 基于内容的垃圾邮件识别方法工作原理n一封标准格式的电子邮件包含有邮件头部(mail head)和邮件体(mail body)两部分n邮件头部包括发件人,收件人,抄送人,发信日期,主题,附件等信息n邮件体包括邮件正文信息n实例图如下:2023-2-52023-2-5垃

    3、圾邮件过滤的基础n在不考虑附件、图片化文字等问题,只简单考虑邮件中包含的文本内容情况下,这类垃圾邮件大概占总垃圾邮件数量的80%n垃圾邮件过滤的基础是识别出所接收到邮件是正常邮件还是垃圾邮件,而这个识别过程可以看作是一种二类的文本分文本分类类问题,即正常邮件和垃圾邮件两个类别文本的识别2023-2-5识别方法的主要步骤n基于内容的垃圾邮件识别方法的主要步骤:将解码并格式化后的电子邮件视为文本;分词并使用相应的文本表示方法来表示文本,较多的方法采用向量空间模型 VSM;基于已有的垃圾邮件和正常邮件语料库,采用文本分类算法建立垃圾邮件识别模型;基于识别模型判别新收到的邮件是否为垃圾邮件2023-2

    4、-59.4.3 一种基于聚类的垃圾邮件识别方法n介绍的方法首先采用聚类算法学习训练语料,并建立识别模型,然后再结合kNN分类方法思想对测试语料决策分类,具有很好的识别准确度以及效率n并可以通过聚类算法增量更新模型2023-2-5建立识别模型n利用一趟聚类算法建立识别模型,过程如下:初始时,簇集合为空,读入一个新的文本;以这个对象构造一个新的簇,该文本的类别标识作为新簇的类别标识;若文本已被处理完,则转(6),否则读入新对象,计算并选择最大的相似度的簇;若最大相似度小于给定半径阈值r,转(2);否则将该文本并入具有最大相似度的簇,转(3);采用投票机制对聚类得到的簇进行标识;得到聚类结果(识别模

    5、型),建模阶段结束。2023-2-5决策分类n结合kNN分类方法思想,利用识别模型对测试语料进行分类处理:n给定一个测试文本x,使用公式(1)计算模型m0的每个簇的打分,即(1)(2)n找出k1(first_k_value)个最近邻的簇,并在这些簇中查找k2(second_k_value)个最近邻的文本n基于得到的k2最近邻文本集,使用公式(2)给其打分,并将x判定为得分最高的类别2023-2-5kNNCjiiji)C,C(y)C,x(sim)C,x000re(ClusterScokNNdjiiji)C,d(y)d,x(sim)C,xScore(模型更新n对于新添加的训练语料,采用建立模型一样的方法对新添加的训练文本进行增量式聚类,更新聚类结果,以得到新的识别模型2023-2-5部分算法性能测试结果部分算法性能测试结果2023-2-5Ling-Spam语料lemm版本上的十折交叉验证分类结果2023-2-5Ling-Spam上的增量式建模分类TCR值2023-2-5Ling-Spam上的增量式建模的簇变化情况2023-2-5


    注意事项

    本文(广东工业大学课件.ppt)为本站会员(晟晟文业)主动上传,其收益全归该用户,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!




    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库