欢迎来到163文库! | 帮助中心 精品课件PPT、教案、教学设计、试题试卷、教学素材分享与下载!
163文库
全部分类
  • 办公、行业>
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 中职>
  • 大学>
  • 各类题库>
  • ImageVerifierCode 换一换
    首页 163文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    7-8常系数非齐次线性方程课件.ppt

    • 文档编号:4372109       资源大小:1.09MB        全文页数:18页
    • 资源格式: PPT        下载积分:19文币     交易提醒:下载本文档,19文币将自动转入上传用户(晟晟文业)的账号。
    微信登录下载
    快捷注册下载 游客一键下载
    账号登录下载
    二维码
    微信扫一扫登录
    下载资源需要19文币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    优惠套餐(点此详情)
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、试题类文档,标题没说有答案的,则无答案。带答案试题资料的主观题可能无答案。PPT文档的音视频可能无法播放。请谨慎下单,否则不予退换。
    3、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者搜狗浏览器、谷歌浏览器下载即可。。

    7-8常系数非齐次线性方程课件.ppt

    1、)(xfqyypy 二阶常系数非齐次线性方程二阶常系数非齐次线性方程对应齐次方程对应齐次方程,0 qyypy通解结构通解结构,yYy 常见类型常见类型),(xPm,)(xmexP,cos)(xexPxm ,sin)(xexPxm 难点难点:如何求特解?如何求特解?方法方法:待定系数法待定系数法.)()(xPexfmx 一、型第八节第八节 常系数非齐次线性方程常系数非齐次线性方程设非齐方程特解为设非齐方程特解为xexQy)(代入原方程代入原方程)()()()()2()(2xPxQqpxQpxQm 不是特征方程的根,不是特征方程的根,若若)1(,02 qp ),()(xQxQm 可可设设是特征方程

    2、的单根,是特征方程的单根,若若)2(,02 qp ,02 p),()(xxQxQm 可设可设;)(xmexQy ;)(xmexxQy 是特征方程的重根,是特征方程的重根,若若)3(,02 qp ,02 p),()(2xQxxQm 可可设设综上讨论综上讨论,)(xQexymxk 设设 是重根是重根是单根是单根不是根不是根2,10k注意注意上述结论可推广到上述结论可推广到n阶常系数非齐次线性阶常系数非齐次线性微分方程(微分方程(k是重根次数)是重根次数).)(2xmexQxy 特别地特别地xAeqyypy 是特征方程的重根是特征方程的重根是特征方程的单根是特征方程的单根不是特征方程的根不是特征方程

    3、的根 xxxexAxepAeqpAy222,2,.232的通解的通解求方程求方程xxeyyy 解解对应齐次方程通解对应齐次方程通解特征方程特征方程,0232 rr特征根特征根,2121 rr,221xxececY 是单根,是单根,2 ,)(2xeBAxxy 设设代入方程代入方程,得得xABAx 22,121 BAxexxy2)121(于是于是原方程通解为原方程通解为.)121(2221xxxexxeCeCy 例例1 1型型二、二、sin)(cos)()(xxPxxPexfnlx sincos)(xPxPexfnlx 22jeePeePexjxjnxjxjlx xjnlxjnlejPPejPP)

    4、()()22()22(,)()()()(xjxjexPexP ,)()(xjexPqyypy 设设,)(1xjmkeQxy 利用欧拉公式利用欧拉公式,)()(xjexPqyypy 设设,)(1xjmkeQxy xjmxjmxkeQeQexy ,sin)(cos)()2()1(xxRxxRexmmxk 次多项式,次多项式,是是其中其中mxRxRmm)(),()2()1(nlm,max,10 是单根是单根不是根不是根jjk注意注意上述结论可推广到上述结论可推广到n阶常系数非齐次线性微分方程阶常系数非齐次线性微分方程.sin4的通解的通解求方程求方程xyy 解解对应齐方通解对应齐方通解,sincos

    5、21xCxCY 作辅助方程作辅助方程,4jxeyy ,是是单单根根j ,*jxAxey 故故代入上式代入上式,42 Aj,2jA ,)cos2(sin22*jxxxxjxeyjx 所求非齐方程特解为所求非齐方程特解为,cos2xxy 原方程通解为原方程通解为.cos2sincos21xxxCxCy (取虚部)(取虚部)例例2 2.2cos的通解的通解求方程求方程xxyy 解解对应齐方通解对应齐方通解,sincos21xCxCY 作辅助方程作辅助方程,2 jxxeyy ,2 不不是是特特征征方方程程的的根根j ,)(2*jxeBAxy 设设代入辅助方程代入辅助方程 13034ABAj,9431j

    6、BA ,,)9431(2*jxejxy 例例3 3)2sin2)(cos9431(xjxjx 所求非齐方程特解为所求非齐方程特解为,2sin942cos31xxxy 原方程通解为原方程通解为.2sin942cos31sincos21xxxxCxCy ,)2sin312cos94(2sin942cos31jxxxxxx (取实部)(取实部)注意注意xAexAexx sin,cos.)(的实部和虚部的实部和虚部分别是分别是xjAe .tan的通解的通解求方程求方程xyy 解解对应齐方通解对应齐方通解,sincos21xCxCY 用常数变易法求非齐方程通解用常数变易法求非齐方程通解,sin)(cos

    7、)(21xxcxxcy 设设,1)(xw,cos)(tanseclnsin)(2211 CxxcCxxxxc原方程通解为原方程通解为.tanseclncossincos21xxxxCxCy 例例4 4三、小结三、小结可以是复数)可以是复数)(),()()1(xPexfmx);(xQexymxk ,sin)(cos)()()2(xxPxxPexfnlx ;sin)(cos)()2()1(xxRxxRexymmxk (待定系数法待定系数法)只含上式一项解法只含上式一项解法:作辅助方程作辅助方程,求特解求特解,取取特解的实部或虚部特解的实部或虚部,得原非齐方程特解得原非齐方程特解.思考题思考题写出微

    8、分方程写出微分方程xexyyy228644 的待定特解的形式的待定特解的形式.思考题解答思考题解答设设 的特解为的特解为2644xyyy *1yxeyyy2844 设设 的特解为的特解为*2y*2y*1*yy 则所求特解为则所求特解为0442 rr特征根特征根22,1 rCBxAxy 2*1xeDxy22*2(重根)(重根)*2y*1*yy CBxAx 2.22xeDx 一、一、求下列微分方程的通解求下列微分方程的通解:1 1、xeyay 2;2 2、xxeyyy 323;3 3、xxyycos4 ;4 4、xyy2sin .二、二、求下列各微分方程满足已给初始条件的特解求下列各微分方程满足已

    9、给初始条件的特解:1 1、0,1,5400 xxyyyy;2 2、xxexeyyy 2,1,111 xxyy;3 3、)2cos(214xxyy ,0,000 xxyy.练练 习习 题题三、三、含源含源在在CLR,串联电路中串联电路中,电动电动E势为势为的电源对的电源对电电充电充电容器容器 C.已已20 E知知伏伏,微法微法2.0 C,亨亨1.0 L,欧欧1000 R,试求合上开试求合上开后后关关 K的电的电及及流流)(ti)(tuc电电压压 .四、四、设设)(x 函数函数连续连续,且满足且满足 xxxdttxdtttex00)()()(,)(x 求求.练习题答案练习题答案一、一、1 1、2211sincosaeaxCaxCyx ;2 2、)323(2221xxeeCeCyxxx ;3 3、xxxxCxCysin92cos312sin2cos21 ;4 4、212cos10121 xeCeCyxx.二、二、1 1、xeyx45)511(1614 ;2 2、xxxexexexeey26)121(61223 ;3 3、)2sin1(812sin161xxxy .三、三、)105sin(104)(310523tetit (安安),105sin()105cos(2020)(331053ttetutc (伏伏).四、四、)sin(cos21)(xexxx .


    注意事项

    本文(7-8常系数非齐次线性方程课件.ppt)为本站会员(晟晟文业)主动上传,其收益全归该用户,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!




    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库