欢迎来到163文库! | 帮助中心 精品课件PPT、教案、教学设计、试题试卷、教学素材分享与下载!
163文库
全部分类
  • 办公、行业>
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 中职>
  • 大学>
  • 各类题库>
  • ImageVerifierCode 换一换
    首页 163文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    273课时 二次根式的混合运算 省优获奖课 公开课一等奖课件 公开课一等奖课件.ppt

    • 文档编号:4126747       资源大小:5.09MB        全文页数:56页
    • 资源格式: PPT        下载积分:28文币     交易提醒:下载本文档,28文币将自动转入上传用户(晟晟文业)的账号。
    微信登录下载
    快捷注册下载 游客一键下载
    账号登录下载
    二维码
    微信扫一扫登录
    下载资源需要28文币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    优惠套餐(点此详情)
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、试题类文档,标题没说有答案的,则无答案。带答案试题资料的主观题可能无答案。PPT文档的音视频可能无法播放。请谨慎下单,否则不予退换。
    3、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者搜狗浏览器、谷歌浏览器下载即可。。

    273课时 二次根式的混合运算 省优获奖课 公开课一等奖课件 公开课一等奖课件.ppt

    1、2.7 二次根式第二章 实数第3课时 二次根式的混合运算学习目标1.掌握二次根式的混合运算的运算法则.(重点)2.会运用二次根式的混合运算法则进行有关的运算.(难点)导入新课导入新课问题引入 如果梯形的上、下底长分别为 cm,cm,高为 cm,那么它的面积是多少?1=2 2+4 362=2+2 36=26+2 36 =2 6+2 3 6 =2 2 3+2 3 3 2=2 3+2 3 2梯梯形形面面 积积()()()()2 =2 3+6 2 cm.()()22346导入新课导入新课问题1 单项式与多项式、多项式与多项式的乘法法则法则分别是什么?问题2 多项式与单项式的除法法则是什么?m(a+b+

    2、c)=ma+mb+mc;(m+n)(a+b)=ma+mb+na+nb复习引入(ma+mb+mc)m=a+b+c分配律 单多 转化 前面两个问题的思路是:思考 若把字母a,b,c,m都用二次根式代替(每个同学任选一组),然后对比归纳,你们发现了什么?单单 讲授新课讲授新课 二次根式的混合运算一 二次根式的加、减、乘、除混合运算与整式运算一样,体现在:运算律、运算顺序、乘法法则仍然适用.例1 计算:18+3624 23 62 2()();()();解:18+3686+36()()4 3+3 2.24 23 62 24 22 23 62 2()()323.2 二次根式的混合运算,先要弄清运算种类,再

    3、确定运算顺序:先乘除,再加减,有括号的要算括号内的,最后按照二次根式的相应的运算法则进行.归纳3(23)(25).()23(23)(25)25 2+3 215()()解:132 2.此处类比“多项式多项式”即(x+a)(x+b)=x2+(a+b)x+ab.(1)32327+63();06(2)20163+312.2()-633 336 解:(1)原式3 3.(2)原式1+2 333 32.【变式题】计算:有绝对值符号的,同括号一样,先去绝对值,注意去掉绝对值后,得到的数应该为正数.归纳例2:计算:32(1);231(2)188;81(3)(24)3.6解:(1)3223333222236316

    4、216)3121(;661(2)818181622223222412223;2453)6124(361324解法一:(3)361324 3618 66224 26122.2611你还有其他解法吗?解法二:原式=1 61466631(3)(24)3.6632 66311 636311 636311 3 26311 2.6解:(4)原式=25(4)9918;225299922252993 221299.2 思考:还可以继续化简吗?为什么?如果算式当中有个别二次根式化简最简二次根式仍不能与其它最简二次根式合并同类项,结果中可保留,不必化为最简式.提醒二次根式的化简求值二问题:化简 ,其中a=3,b=

    5、2.你是怎么做的?1baba解法一:123 23把a=3,b=2代入代数式中,原式=13 223 23 22 3.解法二:1abbaba原式=22 3.把a=3,b=2代入代数式中,bb a原式先代入后化简先化简后代入哪种简便?解二次根式化简求值问题时,直接代入求值很麻烦,要先化简已知条件,再用乘法公式变形代入即可求得方法总结例3:已知 ,求251,251ba222.ab分析:先化简已知条件,再利用乘法公式变形,即a2+b2=(a+b)2-2ab,最后代入求解.解:15252,52(52)(52)a15252,52(52)(52)b2 5,1,abab 2222()22ababab2(2 5)

    6、22202 5.变式训练:已知 的整数部分是a,小数部分是b,求a2+b2的值.10解:31043,103.ab22223(103)9 196 3286 3.ab思考:如图,图中小正方形的边长为1,试求图中梯形ABCD的面积.你有哪些方法?二次根式的应用三可把梯形ABCD分割成两个三角形和一个梯形,如图所示.方法1:分割法S1S2S3S梯形ABCD=S1+S2+S31113 13 2(36)3222 327318.22通过补图,可把梯形ABCD变成一个大梯形,如图所示.方法2:补图法S1S2S梯形ABCD=S梯形ABEFS1S2111(27)51 142222 451418.22EF过点D作A

    7、B边的高DE,如图所示.方法3:直接法S梯形ABCD1(25 2)3 22E1()2CDABDE16 23 2218.归纳:利用二次根式可以简单便捷的求出结果例4:教师节就要到了,李欣同学准备做两张大小不同的正方形贺卡送给老师以表示祝贺,其中一张面积为288平方厘米,另一张面积为338平方厘米.如果用彩带把贺卡镶边会更漂亮,她现在有1.5米的彩带,请你帮忙算一算她的彩带够不够用.分析:可以通过两个正方形的面积分别计算出正方形的边长,进一步求出两个正方形的周长之和,与1.5米比较即可得出结论.解:贺卡的周长为4(288338)4(12 213 2)4 25 2141.4()150 141.4厘米

    8、答:李欣的彩带够用.本题是利用二次根式的加法来解决实际生活中的问题,解答本题的关键在于理解题意并列出算式方法总结当堂练习当堂练习 1.下列计算中正确的是()1A.3(3)33B.(12-27)31 1C.32222D.3(23)62 3B2.已知 试求x2+2xy+y2的值.3 1,3 1,xy解:x2+2xy+y2=(x+y)2把 代入上式得3 1,3 1,xy原式=23+1+31()()22 312.()10152313128)2118((1);(2);(3).解:(1)1015210101015552101011051;10101(2)313123331334331332;3343.计算

    9、.解:(3)8)2118(8218188218184144 212 10.4.在一个边长为 cm的正方形内部,挖去一个边长为 cm的正方形,求剩余部分的面积.(6 155 5)(6 155 5)解:由题意得,222(6 155 5)(6 155 5)(6 155 5)(6 155 5)(6 155 5)(6 155 5)12 15 10 5600 3(cm).即剩余部分的面积是2600 3cm.5.(1)已知 ,求 的值;31x 223xx解:x2-2x-3=(x-3)(x+1)31331 1 32321.(2)已知 ,求 的值.5151,22xy22xxyy解:51515,22xy51511

    10、,22xy2222514.xxyyxyxy 6.阅读下列材料,然后回答问题:在进行类似于二次根式 的运算时,通常有如下两种方法将其进一步化简:231方法一:2231231231;31313131方法二:313123 131.313131能力提升:535325353.535353(1)请用两种不同的方法化简:(2)化简:2;5322253253253;53535353解:(1)1111.4264862018201614264862018201621111(2)42648620182016120182.2课堂小结课堂小结二次根式混合运算乘法公式化简求值分 母 有 理 化化简已知条件和所求代数式 (

    11、a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (x+a)(x+b)=x2+(a+b)x+ab1.1 探索勾股定理第一章 勾股定理导入新课讲授新课当堂练习课堂小结第2课时 验证勾股定理1.学会用几种方法验证勾股定理(重点)2.能够运用勾股定理解决简单问题(重点,难点)学习目标导入新课导入新课观察与思考 活动:请你利用自己准备的四个全等的直角三角形拼出以斜边为边长的正方形 有不同的拼法吗?讲授新课讲授新课勾股定理的验证一 据不完全统计,验证的方法有400多种,你有自己的方法吗?问题:上节课我们认识了勾股定理,你还记得它的内容吗?那么如何验证勾股

    12、定理呢?几何画板:勾股定理的多种证明演示.gsp双击图标aaaabbbbcccc方法小结:我们利用拼图的方法,将形的问题与数的问题结合起来,再进行整式运算,从理论上验证了勾股定理 验证方法一:验证方法一:毕达哥拉斯证法大正方形的面积可以表示为 ;也可以表示为 .(a+b)2c2+4 ab(a+b)2=c2+4 ab a2+2ab+b2=c2+2ab a2+b2=c21212cabcab 验证方法二:赵爽弦图验证方法二:赵爽弦图bcabc大正方形的面积可以表示为 ;也可以表示为 .c2=4 ab+(b-a)2 =2ab+b2-2ab+a2 =a2+b2 a2+b2=c2c24 ab+(b-a)2

    13、1212bcabcaABCD如图,梯形由三个直角三角形组合而成,利用面积公式,列出代数关系式,得化简,得2111()()2.222a b b aabc 222.abc 验证方法三:美国总统证法验证方法三:美国总统证法 abc青入青方青出青出青入青入朱入朱方朱出青朱出入图课外链接abcABCDEFO达芬奇对勾股定理的证明AaBCbDEFOABCDEF 如图,过 A 点画一直线 AL 使其垂直于 DE,并交 DE 于 L,交 BC 于 M.通过证明BCFBDA,利用三角形面积与长方形面积的关系,得到正方形ABFG与矩形BDLM等积,同理正方形ACKH与 矩形MLEC也等积,于是推得222ABACB

    14、C 欧几里得证明勾股定理推荐书目议一议ccbbaa观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c2.勾股定理的简单应用二例1:我方侦查员小王在距离东西向公路400m处侦查,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400m,10s后,汽车与他相距500m,你能帮小王计算敌方汽车的速度吗?公路公路BCA400m500m解:由勾股定理,得AB2=BC2+AC2,即 5002=BC2+4002,所以,BC=300.敌方汽车10s行驶了300m,那么它1h行驶的距离为300660=108000(m)即它行驶的速度为108km/h.练一练1.湖的两端有A、

    15、两点,从与A方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为()ABCA.50米 B.120米 C.100米 D.130米130120?AABC2.如图,太阳能热水器的支架AB长为90 cm,与AB垂直的BC长为120 cm.太阳能真空管AC有多长?解:在RtABC中,由勾股定理,得 AC2=AB2+BC2,AC2=902+1202,AC=150(cm).答:太阳能真空管AC长150 cm.例2:如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA12km,BB14km,A1B18km.现要在高速公路上A1、B1之间设一个出口P,使A,B两个

    16、村庄到P的距离之和最短,求这个最短距离和解:作点B关于MN的对称点B,连接AB,交A1B1于P点,连BP.则APBPAPPBAB,易知P点即为到点A,B距离之和最短的点过点A作AEBB于点E,则AEA1B18km,BEAA1BB1246(km)由勾股定理,得BA2AE2BE28262,AB10(km)即APBPAB10km,故出口P到A,B两村庄的最短距离和是10km.变式:如图,在一条公路上有A、B两站相距25km,C、D为两个小镇,已知DAAB,CB AB,DA=15km,CB=10km,现在要在公路边上建设一个加油站E,使得它到两镇的距离相等,请问E站应建在距A站多远处?DAEBC151

    17、025-x,25)AExEBx 解解:设设长长为为 千千米米则则长长为为(千千米米,由由题题意意得得:2222151025)xx (10 x 解解得得:10EA答答:站站应应建建在在距距 站站千千米米处处.当堂练习当堂练习1.在直角三角形中,满足条件的三边长可以是 (写出一组即可)【解析】答案不唯一,只要满足式子a2+b2=c2即可.答案:3,4,5(满足题意的均可)2.如图,王大爷准备建一个蔬菜大棚,棚宽8m,高6m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,阳光透过的最大面积是_.200m23.如图,一根旗杆在离地面9 m处折断,旗杆顶部落在离旗杆底部12 m处.旗杆原来有多高?12

    18、 m12 m9 m9 m解:设旗杆顶部到折断处的距离为x m,根据勾股定理得222912x,解得x=15,15+9=24(m).答:旗杆原来高24 m.4.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,AD=13m,B=ACD=90小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?解:在RtABC中,由勾股定理,得 AC2=AB2+BC2,AC=5m,在RtACD中,由勾股定理,得 CD2=AD2AC2,CD=12m,S草坪=SRtABC+SRtACD=ABBC+ACDC =(34+512)=36 m2故需要的费用为36100=3600元2121215.如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC的长.DABCEF解:在RtABF中,由勾股定理,得 BF2=AF2AB2=10282BF=6(cm).CF=BCBF=4.设EC=x,则EF=DE=8x,在RtECF中,根据勾股定理,得 x2+42=(8x)2解得 x=3.所以EC的长为3 cm.探索勾股定理勾股定理的验证课堂小结课堂小结勾股定理的简单运用


    注意事项

    本文(273课时 二次根式的混合运算 省优获奖课 公开课一等奖课件 公开课一等奖课件.ppt)为本站会员(晟晟文业)主动上传,其收益全归该用户,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!




    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库