1、 6.3.16.3.1 二项式定理二项式定理学习目标1.能用计数原理证明二项式定理;2.掌握二项式定理及其二项式展开式的通项公式;3.能解决与二项式定理有关的简单问题.4.核心素养:数学抽象、数学运算。一、回顾旧知组合数公式:(1)(2)(1);1.!mmnnmmAn nnn mCAm!()!2.mnnCm nm;01.nC我们规定:13:;mn mnnC C性质.211mnmnmnCCC性质二、探究新知1.我们知道,2)(222bababa.33)(32233babbaaba4(2).,()ab根据你发现的规律 你能写出的展开式吗?(1).观察以上展开式,分析其运算过程,你能发现什么规律?(
2、3).,()nab进一步地 你能写出的展开式吗?2()a b我们先来分析的展开过程.根据多项式乘法法则,)()(2bababa.222baba)()(babbaabbabbaaa,0时当k22abakk个出现的次数相当于从22a,0)(02Cbba的组合数个中取出.12个只有即a,1时当kabbakk2个出现的次数相当于从2ab,1)(12Cbba的组合数个中取出.2个共有即ab,2时当k22bbakk个出现的次数相当于从22b,2)(22Cbba的组合数个中取出.12个只有即b2 kka下b面我们再来分析一下形如的同类项的个数.)(222122022bCabCaCba的展开式吗?43)(,)
3、(baba写出你能利用计数原理仿照上述过程,.)(3332232133033bCabCbaCaCba?思考:.)(44433422243144044bCabCbaCbaCaCba(a+b)n=?2.二项展开式定理*C 110NnbbaCbaCaCbannnkknknnnnnn每个都不取b的情况有1种,即Cn0,则an前的系数为Cn0恰有1个取b的情况有Cn1种,则an-1b前的系数为Cn1恰有2个取b的情况有Cn2 种,则an-2b2前的系数为Cn2.恰有k个取b的情况有Cnk 种,则an-kbk前的系数为Cnk.恰有n个取b的情况有Cnn 种,则bn前的系数为Cnn011(),nnnkn k
4、knnnnnnC aC abC abaC bbnN.),2,1,0(叫做二项式系数其中各项的系数nkCkn1,kn kknkC abT叫做二展开式用通项式的表示 右边的多项式叫做(a+b)n的二项展开式kknknkbaCT1项即通项为展开式的第1k2.二项展开式 .各项中a的指数从n起依次减小1,到0为止各项中b的指数从0起依次增加1,到n为止如nnnkknnnnnxCxCxCxCCx2210)1(.)1(6的展开式求xx 例1.解:.)1(6的展开式求xx 例1.,根据二项式定理616)()1(xxxx66651564246333624261516606xCxxCxxCxxCxxCxxCxC
5、64224661520156xxxxxx1.(a+b)n的二项展开式有n+1项,是和的形式,各项的幂指数规律是:(1)各项的次数和等于n.(2)字母a按降幂排列,从第一项起,次数由n逐项减1直到0;字母b按升幂排列,从第一项起,次数由0逐项加1直到n.2.逆用二项式定理可以化简多项式,体现的是整体思想.注意分析已知多项式的特点,向二项展开式的形式靠拢.例2.(1).求(1+2x)7的展开式的第4项的系数;6212(2).xxx.求的展开式中的系数3537C第4项的二项式系数,例2.(1).求(1+2x)7的展开式的第4项的系数;6212(2).xxx.求的展开式中的系数解:(1).(1+2x)
6、7的展开式的第4项是T3+1=C7317-3(2x)3 =35 23 x3 =280 x3所以第4项的系数是280.例2.(1).求(1+2x)7的展开式的第4项的系数;6212(2).xxx.求的展开式中的系数解:612.(2)xx的展开式的通项是kkkxxC)1()2(66.2)1(366kkkkxC得根据题意,23k.1,k即的系数是因此2,x.1922)1(165C注意:1).注意对二项式定理的灵活应用.2).注意区别二项式系数与项的系数的概念.二项式系数:Cnr 项的系数:二项式系数与数字系数的积 3).求二项式系数或项的系数的一种方法是将二项式展开.1.二项式定理:011()nnnrn rrnnnnnna bC aC abC abC b 2.通项:1,(0,1,2,)kn kkknTC abkn 3.二项式系数:第(k+1)项4.特殊地:12211nkknnnnnnxC xC xC xC x ()012(11)nnnnnnCCCC 2n 注:项的系数与二项式系数是两个不同的概念令以x=1得三.课堂小结:1、课本P31 练习1,2,3,4,5(做在课本上)2、课本P34 习题6.3 4,5四.课后作业: