1、第1页,共66页。()fx dx 2.2.计算方法计算方法恒等变形线性运算法则凑微分变量代换分部积分基本积分表1.1.基本概念基本概念原函数与不定积分原函数与不定积分 ),()(xfdxxfdxd ,)()(dxxfdxxfd ,)()(CxFdxxF.)()(CxFxdF第2页,共66页。设设,)()(ufuF)(xu连续可导连续可导,()()()dg x dxfxxx ()FxC()()duxf uu ()()uxF uC 则有则有换元法则换元法则(I)-(I)-凑微分法凑微分法换元法则换元法则(II)-变量代换变量代换()0 x 又若又若则换元法则换元法I可逆可逆()df uu ()()
2、dfxxx ()g x dx ()G xC()()Gxg x 1()xu 1()GuC 第3页,共66页。初等函数的原函数不一定是初等函数初等函数的原函数不一定是初等函数,因此不一因此不一定都能积出定都能积出.例如例如,d2xex,dsinxxx,dsin2xx,dln1xx,1d4 xx,d13xx,)10(dsin122kxxk注意的问题注意的问题第4页,共66页。221)()()()2)(sin)cos()xxf xfx e dxe f xcfxxf x 求求证证:设设求求例例1 cxfedxxfexfedxexfdxxfedxexfdxexfxfxxxxxxx )()()()()()(
3、)()(.1法法解解1)第5页,共66页。!)()()()()(.3所以得证所以得证令令法法xfexfexFcxfexFxxx cexfexfddxexfxfxxx )()()()(.2法法第6页,共66页。cuuduuufuufxxf 2)1()(1)(sin1)(sin.1222即即法法cxxxf 2)(2解解2)222323422222(sin)2sin coscos2sin cos(sin)2cossin1(sin)2cossincos21(sin)(1 sin)21()(1)2fxxxxxxfxxxfxxxdxxcfxxcf xxc 法法第7页,共66页。例例2 求求.d1xx解解设
4、设1)(xxF1x,1x1x,1x则则)(xF1,1221xCxx1,2221xCxx因因)(xF连续连续 ,)1()1()1(FFF得得21211121CC221121CC记作记作C得得xxd1)(xF1,21221xCxx1,21221xCxx,)1(221Cx,)1(221Cx利用利用 第8页,共66页。例例3 求求.dsincossincos3xxxxx解解 令令xxsincos3xBAxBAsin)(cos)(比较同类项系数3 BA1 BA,故2,1BA 原式原式xxxxxsincos)sind(cos2dCxxxsincosln说明说明:此技巧适用于形为此技巧适用于形为xxdxcx
5、bxadsincossincos的积分的积分.)sin(cos)sin(cosxxBxxAxbxasincos令)sincos()sincos(xdxcBxdxcA第9页,共66页。例例4 4)()sin()sin(dkbabxaxxI求xbxaxd)sin()sin()()sin(bxax)sin(1ba xbxaxbad)sin()sin()sin(1)sin(ax)cos(bx)cos(ax)sin(bx)sin(1ba xbxbxd)sin()cos(xaxaxd)sin()cos(Caxbxba)sin(ln)sin(ln)sin(1Caxbxba)sin()sin(ln)sin(1
6、解解I I=第10页,共66页。例例5 5xxbxaxIdsincossin1求.dsincoscos2xxbxaxI及及因为因为211cossindcossinaxbxaIbIxxCaxbx 21cossindcossinbxaxbIaIxaxbx 2lncossinaxbxC1222221(lncossin)1(lncossin)IbxaaxbxCabIaxbaxbxCab 解解 联合法联合法第11页,共66页。例例6 6 求求(0)()()dxIbaxa bx 221()()()()222arcsin()2dxIdxxa bxababxabxCba 解法解法1()()()dxdxIxa
7、bxbxxaxa 解法解法22222()1(1)bxbaba ttxadxdtxatt 令令222arctan2arctan1bxIdttCCxat 第12页,共66页。例例6 6 求求221sin,cos,2()sin cosxabxbabaxabxttbabadxbattdt注意到注意到令令(0)()()dxIbaxa bx 解法解法3()()222arctandxxa bxxadttCCbx 第13页,共66页。例例6 6 求求nnnbxaxxI11)()(d解解nbxaxbxaxxI)()(d(n 为自然数)令nbxaxt则,bxaxtnxbxbattnnd)(d212dttbanCt
8、abn1Caxbxabnnxbxbatttnnd)(1d2)(dd)(bxaxxttbanab 第14页,共66页。例例6.求求解解:原式原式xxd14)1(2x)1(2 x211d4xx2arctan2211xx21221 ln21xx21xxCxxxxd12122121xxxxd121221212)(2121xx)d(1xx 2)(2121xx)d(1xx 注意本题技巧注意本题技巧xx21arctan2212Cxxxx1212ln24122)0(x按常规方法较繁按常规方法较繁)12)(12(111224xxxxx第15页,共66页。例例7 7 求求.1d632xxxeeex解解 令令,6x
9、et 则则,ln6tx txtdd6原式原式ttttt)1(d623tttt)1)(1(d621331362ttttt dtln61ln3t)1ln(232tCt arctan3Ceeexxxx636arctan3)1ln()1ln(323第16页,共66页。2222225()212255xxxxdxdxxxx ()解法解法1 1 恒等变形恒等变形,代基本公式代基本公式222221522ln(152)2232ln(152)52xxxxxxxCxxxx ()()22222225222311xxxdxxdxx ()()()()例例8 8 求求2252xdxxx 第17页,共66页。22222223
10、25212(2tan1)2sec2sec(4sec4secsin3sec).xxdxdxxxxttdtttttt dt ()()解法解法2 2 用三角代换用三角代换12tanxt令令例例8 8 求求2252xdxxx 第18页,共66页。例例8 8 求求2252xdxxx 22222(5)1(1)4(1)52xtdxdtttxx 解法解法3 3 用用EulerEuler第第1 1代换代换252xxtx 2225252(1)2(1)tttxdxdttt 222525522(1)2(1)tttxxttt 令令第19页,共66页。2222234(5)1(5)1616(1)4(1)4(1)(1)ttt
11、tttt 将在处展成Taylor公式:将在处展成Taylor公式:222223222(5)1(1)4(1)52441314(1)(1)2413ln1184(1)xtdxdtttxxtdtttttttCtt 252txxx将代入还原!将代入还原!第20页,共66页。求下列不定积分求下列不定积分dxxx 2ln1ln.1dxeeeexxxx 1.3243 dxxxex2)1(.21004.(1)dxx x dxx 3sin1.5 21.7xxdxdxxx 34sincos.6 )1)(1(.822xxxdx第21页,共66页。cxxxxddxxx lnlnln1ln.12解解cxxcetdtete
12、tettdeetdtettdxxxdtedxextxttttttttt ln11111)1(11ln1ln,ln22令令另解另解第22页,共66页。cxxdxxdxxdxxxxdxxxxxdxxdxxdxxdxxx lnln1ln1ln1ln1ln1lnln1ln1ln1ln1ln22222另解另解第23页,共66页。dxxxex2)1(.2解解dxexxxexxdxedxxxexxxx )1(111111)1(2法法1第24页,共66页。cdxxexedxxexdedxxexdxedxexdxxexdxxxexxxxxxxxx 111111)1(11)1()11()1(222法法2第25页,
13、共66页。dxeeeexxxx 1.3243解解ceeeeeeddxeeeedxeeeexxxxxxxxxxxxxx )arctan(1)()(11222243法法1第26页,共66页。ceecttttttddttttdtttteedeedxeeeexxtexxxxxxxxx )arctan()1arctan(1)1()1(111111)1(12222242242243令令法法2第27页,共66页。解解法法1 cxxxxxddxxxxxxdx )1ln(ln1001)1(100)1()1(10010010010010010010099100法法2cxxdxxxxxxdx )1ln(1001ln
14、11)1(100100991001004.(1)dxx x 第28页,共66页。cxxxdxxdxxxdx )1ln(10011100)1()1(100100100100101100法法3第29页,共66页。dxx 3sin1.5解解法法13332csccotcsccotcot(csccot)csccotcsc(csc1sin1sin1)1csccotsinln csccot1csccot22sinxdxxxxxx dxxxxxdxxxdxxxxxxdxcxdxxdxx 第30页,共66页。2233332sincossin1cotcscsinln csccotcot(csc)ln csccot
15、cot1sincsccscln csccot1csc cot22sinxxxdxxxdxxxxxdxxxxxxxxxdxcxdxxxdx 法法2第31页,共66页。dxxx 34sincos.6解解 2243324331sincossinsin12sinsinsin2sinsinln csccotcsccot()222ln csccotco1sinsxxdxdxxxxxdxxx dxxxxxxxxxcx 第32页,共66页。21.7xxdx解解还还原原 ctttdtttttddtttttttdttttxxdxtxcossinln21cossincossin121cossincossinsinc
16、os21cossincos1sin2第33页,共66页。解解 )1)(1(.822xxxdx)1(1)1()1(11)1(1)1(1)1(11)1)(1(122222222 xxxxxxxxxxxxxxxxxxx第34页,共66页。cxxxxxdxxxxxdx 312arctan31)1ln(21)1ln(2143)21(21)1()1(21)1ln(21222222 )1(21)1()1(21)1()1(21)1(1)1()1)(1(222222222xxdxxxxxdxxddxxxxdxxxxxxdx第35页,共66页。()sin,().f xxxfx dx 1.1.设的原函数为求设的原函
17、数为求1()arcsin,.()xf x dxxCdxf x2 2、设求、设求2()()()sin,.1()fxarctgf xf xxdxfx 3 3、已知求、已知求222(1)ln()ln,().2xf xfxxx dxx 4.4.设且求设且求1 015.(ln)(0)0,().1xfxff xxx 设及求设及求EX第36页,共66页。lnln1sin2.1)2)3)lnlnln1cosxdxxxdxe dxxxxxx 2117106 32 53.1)2)3)(1)(6)(1)xxxdxdxdxxxx 22ln(1)52 31.2).941xxxxxxdxdxx 第37页,共66页。222
18、1tan1tan4.1)2)sin21tansin3)sin4coscos114)5)sin1sinxxdxdxxxxdxxxxdxdxxxx 22222215.1)2)3 443)3 44xaxdxdxxxxxxx dx 第38页,共66页。()sin,().f xxxfx dx 1.1.设的原函数为求设的原函数为求 )()(xfxddxxfx解解 dxxfxfx)()(Cxfxfx )()(11()(sin)coscos22f xxxxxx 11()(sin)cos44fxxxxxx 解解 答答第39页,共66页。211)(xxxf 解解21)(1xxxf )1(1211)(1222xdx
19、dxxxdxxf 则则.)1(31232Cx 1()arcsin,.()xf x dxxCdxf x2.2.设求设求第40页,共66页。2()()()sin,.1()fxarctgf xf xxdxfx 3.3.已知求已知求2()arctan()1()arctan()arctan()fxf xdxfxf x df x 解解322arctan()3f xC322arctansin.3xC第41页,共66页。222(1)ln()ln,().2xf xfxxx dxx 4.4.设且求设且求,11)(xxx则则.1ln2121)(Cxxdxxxdxx ()1()lnln()1xfxxx 22211(1
20、)ln11xf xx 解解第42页,共66页。1 01(ln)(0)0,().1xfxff xxx 5 5 设及求设及求 teetetfttt010101)(解解 tCetCttft00)(212201limCCett )(110limCCtt 0)0(1 Cf12 C xexxxfx010)(第43页,共66页。lnln1.1)2)cosln3)lnlnlndxxxdxdxxxxx 1sin2.1)2)3)1cos11xxxdxdxxdxe dxxee 2117106 32 53.1)2)3)(1)(6)(1)xxxdxdxdxxxx 解解 答答第44页,共66页。2221tan1tan4.
21、1)2)sin21tansin3)sin4coscos114)5)sin1sinxxdxdxxxxdxxxxdxdxxxx dxxxxdxxax 22224431)2)1.5()(1sin)ln,()f xxxxfx dx 6.6.已知的一个原函数为求已知的一个原函数为求第45页,共66页。cxxxdxxxdxxxdx lnlnlnlnlnlnlnlnlnlnlnlnlnln)1解解1cxxxdxxcxxxxxdxxdxxxxxxxxdxxxxxxdxx )lnsinln(cos2lncoslnsinlncoslncos21lncoslnsinlncos1)lnsin(lncoslncos)2
22、第46页,共66页。cxxxctttdttttttdtxxddxxxtx lnlnlnlnln1lnlnlnlnlnlnln)3ln令令第47页,共66页。解解2xxxxxxxdeeeeedxeedx 111)1(1 xedx1)1cexx )1ln(法法1法法2cexceeedeeedxedxexxxxxxxxx )1ln(21212121ln41)21(41)21(11222第48页,共66页。ceedeedxeeedxedxxxxxxxxx )1ln(11)1(1法法3cexcttdtttttdtedxxtetxxx )1ln(ln)1ln()111()1(11)1ln(还还原原法法4第
23、49页,共66页。ceecttdtttdttttdxedtttdxtxtexxxx 1111ln211ln212)1(2111),1ln(,1)222222则则令令第50页,共66页。cdxexdxexxedxexxdedxexdxexdxexxxdxexdxexxdxexdxexxxxxxxxxxxxxx 2tan2tan2tan2tan2tan2tan2cos212cos22cos2sin22cos21cos1sincos11cos1sin1)3222第51页,共66页。解解3dxxx 102)1()1cxxxdxxxxdxxxxdxxxxdxxx 9871098109109102)1(1
24、91)1(141)1(171)1(1)1(2)1(1)1(1)1(21)1(1)1(1)1(11法法1第52页,共66页。法法2cxxxdttttdttttdtttdxxxtx 98710981021021102)1(191)1(141)1(171)111(12)1()1(令令第53页,共66页。cxxcttdtttdtttttdtxxdxdxxxtx 2662323336663611)6(36161)6(266161)6(6)6(161)6(6661)6(61)6(6)6()26第54页,共66页。dttttdttxxdxxxdxdxxxtx535352265226527)1(21)1(21
25、)1(2)1(2)1()32第55页,共66页。cxxxxcuuuucuuuuduuuuuduuuuuduuuut 22232422341234234553253111)1(132)1(1)1(4121112314121123334213321)(33121)()1(21法法1第56页,共66页。duuuuuduuutdttdttttdtttdxxxuttx9642932cos9697107sin527331)1()cos(cossincossincoscossin)1(法法2第57页,共66页。cxxxx 222324211)1(132)1(1)1(4121还原还原令令 cttttdtttt
26、tdtttdxxxdtxdxxttx112311412133121)21()1()1(2,1,12345325352722法法3第58页,共66页。cxxxxxxdxxxdxdxxx tan212cot2cscln21sincos2cos/sin2sin2sintan1)1解解4cxxxxxxddxxxxxdxxx sincoslnsincos)cos(sinsincossincostan1tan1)2cxxxddxxxxddxxxx )cos3arctan(31cos31coscos4cos1)cos(cos4sinsin)322222第59页,共66页。cxxxdxxdxxdxxxdxxx
27、xdxxxx cot2sin12sin12sincos2sin1sincossin1cos)422222第60页,共66页。)2(21cos2)2(21cos21)2cos(11sin11)52 xdxdxxdxxdxxcxx )2(21tan)2(21secln2 第61页,共66页。cxxxdxxxdxxxdxxxdxdxx )42tan()42sec(ln2)42cos(222sin4sin2cos4cos222sin2cos)2sin2(cossin112 另解另解第62页,共66页。解解5 222222222222222222221)21(11)1xaxdaaxdxaxxaaxdxa
28、xxaxdxxax法法1第63页,共66页。dxaxxxaxxxdaxdxxax 2222222222111)(法法2第64页,共66页。cxxxxdxxxxxddxxxx 212arcsin4344341)12(423443)443(814431)222222第65页,共66页。()(1sin)ln,()f xxxxfx dx 6.6.已知的一个原函数为求已知的一个原函数为求解解 )(sin1lncosln)sin1(ln)sin()()()()()(xfxxxxxxxxxfdxxfxxfxxdfdxxxf 的的一一个个原原函函数数为为cxxxxxcxxxxxxxxxxfdxxxf ln1)sin1(lncosln)sin1()sin1(lncosln)sin1()()(第66页,共66页。