1、第3章 电磁场与电磁波电磁场与电磁波长春理工大学1第3章 电磁场与电磁波电磁场与电磁波长春理工大学2本章内容本章内容 3.1 静电场分析静电场分析 3.2 导电媒质中的恒定电场分析导电媒质中的恒定电场分析 3.3 恒定磁场分析恒定磁场分析 3.4 静态场的边值问题及解的惟一性定理静态场的边值问题及解的惟一性定理 3.5 镜像法镜像法 3.6 分离变量法分离变量法 静态电磁场:静态电磁场:场量不随时间变化,包括:场量不随时间变化,包括:静电场、恒定电场和恒定磁场静电场、恒定电场和恒定磁场 时变情况下,电场和磁场相互关联,构成统一的电磁场时变情况下,电场和磁场相互关联,构成统一的电磁场 静态情况下
2、,电场和磁场由各自的源激发,且相互独立静态情况下,电场和磁场由各自的源激发,且相互独立 第3章 电磁场与电磁波电磁场与电磁波长春理工大学33.1 静电场分析静电场分析 本节内容本节内容 3.1.1 静电场的基本方程和边界条件静电场的基本方程和边界条件 3.1.2 电位函数电位函数 3.1.3 导体系统的电容与部分电容导体系统的电容与部分电容 3.1.4 静电场的能量静电场的能量 3.1.5 静电力静电力第3章 电磁场与电磁波电磁场与电磁波长春理工大学42.边界条件边界条件0ED微分形式:微分形式:ED本构关系:本构关系:1.基本方程基本方程0)()(21n21nEEDDeeS0ddlESDCS
3、q积分形式:积分形式:0)(0)(21n21nEEDDee02t1tn2n1EEDDS或或2t1tn2n1EEDD或或3.1.1 静电场的基本方程和边界条件静电场的基本方程和边界条件若分界面上不存在面电荷,即若分界面上不存在面电荷,即 ,则,则0S第3章 电磁场与电磁波电磁场与电磁波长春理工大学5介质介质2 2介质介质1 121212E1Ene212n21n12n2t1n1t21/tantanDDEEEE 在静电平衡的情况下,导体内部的电场为在静电平衡的情况下,导体内部的电场为0,则导体表面的,则导体表面的边界条件为边界条件为 0nnEDeeS0tnEDS或或 场矢量的折射关系场矢量的折射关系
4、 导体表面的边界条件导体表面的边界条件第3章 电磁场与电磁波电磁场与电磁波长春理工大学60E由由即即静电场可以用一个标量函数的梯度来表示,静电场可以用一个标量函数的梯度来表示,标量函数标量函数 称为静称为静电场的标量电位或简称电位。电场的标量电位或简称电位。1.电位函数的定义电位函数的定义E3.1.2 电位函数电位函数第3章 电磁场与电磁波电磁场与电磁波长春理工大学72.电位的表达式电位的表达式对于连续的体分布电荷,由对于连续的体分布电荷,由同理得,面电荷的电位:同理得,面电荷的电位:1()()d4VrrVCR故得故得点电荷的电位:点电荷的电位:()4qrCR()1()d4lCrrlCRd)1
5、)(41d)1()(41d)(41)(3VRrVRrVRRrrEVVV3)1(RRR线电荷的电位:线电荷的电位:rrRCSRrrSSd)(41)(第3章 电磁场与电磁波电磁场与电磁波长春理工大学83.电位差电位差两端点乘两端点乘 ,则有,则有ldE将将d)ddd(ddzzyyxxllE上式两边从点上式两边从点P到点到点Q沿任意路径进行积分,得沿任意路径进行积分,得关于电位差的说明关于电位差的说明 P、Q 两点间的电位差等于电场力将单位正电荷从两点间的电位差等于电场力将单位正电荷从P点移至点移至Q 点点 所做的功,电场力使单位正电荷由高电位处移到低电位处。所做的功,电场力使单位正电荷由高电位处移
6、到低电位处。电位差也称为电压,可用电位差也称为电压,可用U 表示。表示。电位差有确定值,只与首尾两点位置有关,与积分路径无关。电位差有确定值,只与首尾两点位置有关,与积分路径无关。)()(ddQPlEQPQPP、Q 两点间的电位差两点间的电位差电场力做电场力做的功的功第3章 电磁场与电磁波电磁场与电磁波长春理工大学9 静电位不惟一,可以相差一个常数,即静电位不惟一,可以相差一个常数,即)(CC选参考点选参考点令参考点电位为零令参考点电位为零电位确定值电位确定值(电位差电位差)两点间电位差有定值两点间电位差有定值 选择电位参考点的原则选择电位参考点的原则 应使电位表达式有意义。应使电位表达式有意
7、义。应使电位表达式最简单。若电荷分布在有限区域,通常取无应使电位表达式最简单。若电荷分布在有限区域,通常取无 限远作电位参考点。限远作电位参考点。同一个问题只能有一个参考点。同一个问题只能有一个参考点。4.电位参考点电位参考点 为使空间各点电位具有确定值,可以选定空间某一点作为参考为使空间各点电位具有确定值,可以选定空间某一点作为参考点,且令参考点的电位为零,由于空间各点与参考点的电位差为确点,且令参考点的电位为零,由于空间各点与参考点的电位差为确定值,所以该点的电位也就具有确定值,即定值,所以该点的电位也就具有确定值,即第3章 电磁场与电磁波电磁场与电磁波长春理工大学10 例例 3.1.1
8、求电偶极子的电位求电偶极子的电位.解解 在球坐标系中在球坐标系中211202104)11(4)(rrrrqrrqrcos)2/(cos)2/(222221rddrrrddrrcos22drr用二项式展开,由于,得用二项式展开,由于,得dr,cos21drr302020444cos)(rrrrqdrrpep代入上式,得代入上式,得 表示电偶极矩,方向由负电荷指向正电荷。表示电偶极矩,方向由负电荷指向正电荷。dqp+q电偶极子电偶极子zodq2r1rr),(rP第3章 电磁场与电磁波电磁场与电磁波长春理工大学11 例例3.1.2 位于xoy平面上的半径为a、圆心在坐标原点的带电圆盘,面电荷密度为S
9、,如图 所示,求z轴上的电位。解解:由面电荷产生的电位公式:)(2)(4)()(sincos)(41)(2/122002/12 22002/12 20zzazddzdddSzrreerezrdSrrrraSSyxzSS第3章 电磁场与电磁波电磁场与电磁波长春理工大学12以上结果是z0 的结论。对任意轴上的任意点,电位为)(2)(2/122zzazS第3章 电磁场与电磁波电磁场与电磁波长春理工大学13例例 3-1.3 求均匀带电球体产生的电位。解:解:00203033rEraErr(ra)(ra时,radrradrErrr030203033322200radrEdrEararr当r 1、且、且
10、290,则则 10,即电场线近似垂直于良导体表面。即电场线近似垂直于良导体表面。此时,良导体表面可近似地看作为此时,良导体表面可近似地看作为 等位面;等位面;若媒质若媒质1为理想介质为理想介质,即即 10,则则 J1=0,故故J2n=0 且且 E2n=0,即导体,即导体 中的电流和电场与分界面平行中的电流和电场与分界面平行。第3章 电磁场与电磁波电磁场与电磁波长春理工大学393.2.2 恒定电场与静电场的比拟恒定电场与静电场的比拟 如果两种场,在一定条件下,场方程有相同的形式,边界如果两种场,在一定条件下,场方程有相同的形式,边界形状相同,边界条件等效,则其解也必有相同的形式,求解这形状相同,
11、边界条件等效,则其解也必有相同的形式,求解这两种场分布必然是同一个数学问题。只需求出一种场的解,就两种场分布必然是同一个数学问题。只需求出一种场的解,就可以用对应的物理量作替换而得到另一种场的解。这种求解场可以用对应的物理量作替换而得到另一种场的解。这种求解场的方法称为比拟法。的方法称为比拟法。D0U静电场静电场J0U恒定电场恒定电场第3章 电磁场与电磁波电磁场与电磁波长春理工大学40恒定电场与静电场的比拟恒定电场与静电场的比拟基本方程基本方程ED,EEJ0202n2n1t2t1 DDEEn2n1t2t1 JJEE静电场(静电场(区域)区域)00d,0dlESJCS0,0EJ,E0,0DEnn
12、221121 ,nn221121 ,本构关系本构关系位函数位函数边界条件边界条件恒定电场(电源外)恒定电场(电源外)对应物理量对应物理量静电场静电场EEDJqI恒定电场恒定电场GC0d,0dlESDCS第3章 电磁场与电磁波电磁场与电磁波长春理工大学41 例例3.2.1一个有两层介质的平行板电容器,其参数分别为一个有两层介质的平行板电容器,其参数分别为 1、1 和和 2、2,外加电压,外加电压U。求介质面上的自由电荷密度。求介质面上的自由电荷密度。解解:极板是理想导体,:极板是理想导体,为等位面,电流沿为等位面,电流沿z 方向。方向。1n2nJJ 由由1n2nSDD由由U1d2d11,22,z
13、o12121 12212()ddUUUEdE dJ12121122,JJJJEE12JJJ1212()ddJU121212,SSDJDJ上下21122121212112()SDDJUdd 介第3章 电磁场与电磁波电磁场与电磁波长春理工大学42 例例3.2.2 填充有两层介质的同轴电缆,内导体半径为填充有两层介质的同轴电缆,内导体半径为a,外导,外导体半径为体半径为c,介质的分界面半径为,介质的分界面半径为b。两层介质的介电常数为。两层介质的介电常数为 1 和和 2、电导率为、电导率为 1 和和 2。设内导体的电压为。设内导体的电压为U0,外导体接地。求:,外导体接地。求:(1)两导体之间的电流
14、密度和电场强度分布;()两导体之间的电流密度和电场强度分布;(2)介质分界面)介质分界面上的自由电荷面密度。上的自由电荷面密度。J1212I外导体外导体内导体内导体介质介质2 2介质介质1abc11、22、0U第3章 电磁场与电磁波电磁场与电磁波长春理工大学43 (1)设同轴电缆中单位长度的径向电流为)设同轴电缆中单位长度的径向电流为I,则由则由 可得电流密度可得电流密度Sd,JSI()2IJeac111()2JIEeab 介质中的电场介质中的电场222()2JIEebc 解解 电流由内导体流向外导体,在分界面上只有法向分量,电流由内导体流向外导体,在分界面上只有法向分量,所以电流密度成轴对称
15、分布。可先假设电流为所以电流密度成轴对称分布。可先假设电流为I,由此求电流密度由此求电流密度 的表达式,然后求出的表达式,然后求出 和和 ,再由,再由 确定出电流确定出电流 I。J012ddbcabUEE1E2E第3章 电磁场与电磁波电磁场与电磁波长春理工大学4412021()ln()ln()UJeacb ac b 20121()ln()ln()UEeabb ac b 10221()ln()ln()UEebcb ac b 故两种介质中的电流密度和电场强度分别为故两种介质中的电流密度和电场强度分别为120212ln()ln()UIb ac b 01212ddln()ln()22bcabIbIcU
16、EEab由于由于于是得到于是得到第3章 电磁场与电磁波电磁场与电磁波长春理工大学4512011121ln()ln()SaUeEab ac b 21022221ln()ln()ScUeEcb ac b 1211221221021()()ln()ln()SbeEeEUbb ac b nSeD (2)由)由 可得,介质可得,介质1内表面的电荷面密度为内表面的电荷面密度为介质介质2外表面的电荷面密度为外表面的电荷面密度为两种介质分界面上的电荷面密度为两种介质分界面上的电荷面密度为J2112I第3章 电磁场与电磁波电磁场与电磁波长春理工大学46 工程上,常在电容器两极板之间、同轴电缆的芯线与外壳之工程上
17、,常在电容器两极板之间、同轴电缆的芯线与外壳之间,填充不导电的材料作电绝缘。这些绝缘材料的电导率远远小间,填充不导电的材料作电绝缘。这些绝缘材料的电导率远远小于金属材料的电导率,但毕竟不为零,因而当在电极间加上电压于金属材料的电导率,但毕竟不为零,因而当在电极间加上电压U 时,必定会有微小的漏电流时,必定会有微小的漏电流 J 存在。存在。漏电流与电压之比为漏电导,即漏电流与电压之比为漏电导,即UIG 其倒数称为绝缘电阻,即其倒数称为绝缘电阻,即IUGR13.2.3 漏电导漏电导第3章 电磁场与电磁波电磁场与电磁波长春理工大学47(1)假定两电极间的电流为假定两电极间的电流为I;(2)计算两电极
18、间的电流密度计算两电极间的电流密度 矢量矢量J;(3)由由J=E 得到得到 E;(4)由由 ,求出两导,求出两导 体间的电位差;体间的电位差;(5)求比值求比值 ,即得出,即得出 所求电导。所求电导。21dlEUUIG/计算电导的方法一计算电导的方法一:计算电导的方法二计算电导的方法二:(1)假定两电极间的电位差为假定两电极间的电位差为U;(2)计算两电极间的电位分布计算两电极间的电位分布;(3)由由 得到得到E;(4)由由 J=E 得到得到J;(5)由由 ,求出两导体间,求出两导体间 电流;电流;(6)求比值求比值 ,即得出所,即得出所 求电导。求电导。ESISJdUIG/计算电导的方法三计
19、算电导的方法三:静电比拟法:静电比拟法:CGCG第3章 电磁场与电磁波电磁场与电磁波长春理工大学48 例例3.2.3 求同轴电缆的绝缘电阻。设内外的半径分别为求同轴电缆的绝缘电阻。设内外的半径分别为a、b,长度为长度为l,其间媒质的电导率为,其间媒质的电导率为、介电常数为、介电常数为。解解:直接用恒定电场的计算方法直接用恒定电场的计算方法电导电导)/ln(2ablUIG绝缘电阻绝缘电阻ablGRln211baablIlIUln2d2dlElba则则IlIJ2lIJE2设由内导体流向外导体的电流为设由内导体流向外导体的电流为I。第3章 电磁场与电磁波电磁场与电磁波长春理工大学49基本物理量 J
20、J 欧姆定律J J 的散度E E 的旋度 基本方程 电位 边界条件边值问题一般解法特殊解(静电比拟)电导与接地电阻 恒定电场的知识结构框图基本概念:电介质中的静电场 通有直流电流的导电媒质中的恒定电场与电流场 通有直流电流的导电媒质周围电介质中的静态电场第3章 电磁场与电磁波电磁场与电磁波长春理工大学50本节内容本节内容 3.3.1 恒定磁场的基本方程和边界条件恒定磁场的基本方程和边界条件 3.3.2 恒定磁场的矢量磁位和标量磁位恒定磁场的矢量磁位和标量磁位 3.3.3 电感电感 3.3.4 恒定磁场的能量恒定磁场的能量 3.3.5 磁场力磁场力3.3 恒定磁场分析恒定磁场分析第3章 电磁场与
21、电磁波电磁场与电磁波长春理工大学510HJB微分形式微分形式:0dddSSCSBSJlH1.基本方程基本方程BH2.边界条件边界条件本构关系:本构关系:SJHHeBBe)(0)(21n21nSJHHBBt2t12n1n0或或若分界面上不存在面电流,即若分界面上不存在面电流,即JS0,则,则积分形式积分形式:0)(0)(21n21nHHeBBe或或002tt1n2n1HHBB3.3.1 恒定磁场的基本方程和边界条件恒定磁场的基本方程和边界条件第3章 电磁场与电磁波电磁场与电磁波长春理工大学52 矢量磁位的定义矢量磁位的定义 磁矢位的任意性磁矢位的任意性 与电位一样,磁矢位也不是惟一确定的,它加上
22、任意一个标与电位一样,磁矢位也不是惟一确定的,它加上任意一个标量量 的梯度以后,仍然表示同一个磁场,即的梯度以后,仍然表示同一个磁场,即由由AA 0BBA 即恒定磁场可以用一个矢量函数的旋度来表示。即恒定磁场可以用一个矢量函数的旋度来表示。磁矢位的任意性是因为只规定了它的旋度,没有规定其散度磁矢位的任意性是因为只规定了它的旋度,没有规定其散度造成的。为了得到确定的造成的。为了得到确定的A,可以对,可以对A的散度加以限制,在恒定磁的散度加以限制,在恒定磁场中通常规定,并称为库仑规范。场中通常规定,并称为库仑规范。0A()AAA 1.恒定磁场的矢量磁位恒定磁场的矢量磁位矢量磁位或称磁矢位矢量磁位或
23、称磁矢位 3.3.2 恒定磁场的矢量磁位和标量磁位恒定磁场的矢量磁位和标量磁位第3章 电磁场与电磁波电磁场与电磁波长春理工大学53 磁矢位的微分方程磁矢位的微分方程在无源区:在无源区:AB0A 0J JA202 A矢量泊松方程矢量泊松方程矢量拉普拉斯方程矢量拉普拉斯方程AJ2()AAJ 磁矢位的表达式磁矢位的表达式3()1()d()()d44VVJ rRB rVJ rVRR 1()()d4VJ rVR()111()()()()()()J rJ rJ rJ rRRRR 31()RRR JB第3章 电磁场与电磁波电磁场与电磁波长春理工大学54 磁矢位的边界条件磁矢位的边界条件对于面电流和细导线电流
24、回路,磁矢位对于面电流和细导线电流回路,磁矢位分别为分别为 利用磁矢位计算磁通量:利用磁矢位计算磁通量:0A 12AAn12()SeHHJ/HAn121211()SeAAJ细线电流细线电流:CRlIrAd4)(面电流面电流:SSSRrJrAd)(4)(SCSBlAddCSSlASASBddd0dSSA2t1tAA 2n1nAA第3章 电磁场与电磁波电磁场与电磁波长春理工大学55 例例 3.3.1 求小圆环电流回路的远区矢量磁位与磁场。小圆形回求小圆环电流回路的远区矢量磁位与磁场。小圆形回路的半径为路的半径为a,回路中的电流为,回路中的电流为I。解解 如图所示,由于具有轴对称性,如图所示,由于具
25、有轴对称性,矢量磁位和磁场均矢量磁位和磁场均与与 无关,计算无关,计算 xO z 平平面上的矢量磁位与磁场面上的矢量磁位与磁场将不失一般性。将不失一般性。(sincos)rxzre rr ee(cossin)rxyre aa eedd(sincos)dxyle aeea 222221 2(sincos)sincos)rrraar221 22sincosraar小圆环电流小圆环电流aIxzyrRdlrIPO第3章 电磁场与电磁波电磁场与电磁波长春理工大学56对于远区,有对于远区,有r a,所以,所以21 21 2112121()sincos1sincosaaarrrrrrr1(1sincos)a
26、rr2001()(1sincos)(sincos)d4xyIaaA reerr202sin4yI aer由于在由于在 =0 面上面上 ,所以上式可写成,所以上式可写成yee于是得到于是得到20022()sinsin44I aISA reerr第3章 电磁场与电磁波电磁场与电磁波长春理工大学5711(sin)()sinrBAeAerArrr 03(2cossin)4rISeer式中式中S=a 2是小圆环的面积。是小圆环的面积。第3章 电磁场与电磁波电磁场与电磁波长春理工大学58 解解:先求长度为:先求长度为2L 的直线电流的磁矢位。电流元的直线电流的磁矢位。电流元 到点到点 的距离的距离 。则。
27、则22()RzzddzI le I z(,)Pz 0221()d4()LzLIA rezzz220ln()4LzLIezzzz 22022()()ln4()()zzLzLIezLzL 例例 3.3.2 求无限长线电流求无限长线电流 I 的磁矢位,设电流沿的磁矢位,设电流沿+z 方向流动。方向流动。与计算无限长线电荷的电位一样,令与计算无限长线电荷的电位一样,令 可得到无限长线电流可得到无限长线电流的磁矢位的磁矢位 L 01()ln2zIA reCxyzL-L(,)z zddzI le I zR第3章 电磁场与电磁波电磁场与电磁波长春理工大学592.恒定磁场的标量磁位恒定磁场的标量磁位 一般情况
28、下,恒定磁场只能引入磁矢位来描述,但在无传导一般情况下,恒定磁场只能引入磁矢位来描述,但在无传导电流(电流(J0)的空间)的空间 中,则有中,则有即在无传导电流即在无传导电流(J0)的空间中,可以引入一个的空间中,可以引入一个标量位函数来标量位函数来描述磁场。描述磁场。标量磁位的引入标量磁位的引入0HmH 标量磁位或磁标位标量磁位或磁标位 磁标位的微分方程磁标位的微分方程00,()BBHM将将 代入代入mH m0H2mm0 m0HM m0M 等效磁荷体密度等效磁荷体密度第3章 电磁场与电磁波电磁场与电磁波长春理工大学60 与静电位相比较,有与静电位相比较,有 标量磁位的边界条件标量磁位的边界条
29、件m0 n21()SeMM 0m0BHHB 、2m0在线性、各向同性的均匀媒质中在线性、各向同性的均匀媒质中 标量磁位的表达式标量磁位的表达式01()()d4VrrVRmm0()1()d4VrrVRm1m212nn和和m1m22mm10mSnn 和和m1m2式中:式中:等效磁荷面密度等效磁荷面密度或或第3章 电磁场与电磁波电磁场与电磁波长春理工大学611.磁通与磁链磁通与磁链 ii3.3.3 电感电感 单匝线圈形成的回路的磁链定单匝线圈形成的回路的磁链定 义为穿过该回路的磁通量义为穿过该回路的磁通量 多匝线圈形成的导线回路的磁多匝线圈形成的导线回路的磁 链定义为所有线圈的磁通总和链定义为所有线
30、圈的磁通总和 CI 细回路细回路 粗导线构成的回路,磁链分为粗导线构成的回路,磁链分为 两部分:一部分是粗导线包围两部分:一部分是粗导线包围 的、磁力线不穿过导体的外磁通量的、磁力线不穿过导体的外磁通量 o;另一部分是磁力线穿过;另一部分是磁力线穿过 导体、只有粗导线的一部分包围的内磁通量导体、只有粗导线的一部分包围的内磁通量 i。iCI o粗回路粗回路第3章 电磁场与电磁波电磁场与电磁波长春理工大学62 设回路设回路 C 中的电流为中的电流为I,所产生的磁场与回路,所产生的磁场与回路 C 交链的磁链交链的磁链为为,则磁链,则磁链 与回路与回路 C 中的电流中的电流 I 有正比关系,其比值有正
31、比关系,其比值IL称为回路称为回路 C 的自感系数,简称自感。的自感系数,简称自感。外自感外自感ILiiILoo2.自感自感 内自感;内自感;粗导体回路的自感:粗导体回路的自感:L=Li+Lo 自感只与回路的几何形状、尺寸以及周围的磁介质有关,与自感只与回路的几何形状、尺寸以及周围的磁介质有关,与电流无关。电流无关。自感的特点自感的特点:第3章 电磁场与电磁波电磁场与电磁波长春理工大学63 解解:先求内导体的内自感。设同轴:先求内导体的内自感。设同轴线中的电流为线中的电流为I,由安培环路定理,由安培环路定理0ii22,22IIHBaa穿过沿轴线单位长度的矩形面积元穿过沿轴线单位长度的矩形面积元
32、dS=d的磁通为的磁通为0ii2ddd2IBSa(0)a 例例3.3.3求同轴线单位长度的自感。设内导体半径为求同轴线单位长度的自感。设内导体半径为a,外导体,外导体厚度可忽略不计,其半径为厚度可忽略不计,其半径为b,空气填充。,空气填充。得得与与di 交链的电流为交链的电流为22IIa 则与则与di 相应的磁链为相应的磁链为30ii4ddd2IIIaabadIiB2222idaIaIIlHC第3章 电磁场与电磁波电磁场与电磁波长春理工大学64因此内导体中总的内磁链为因此内导体中总的内磁链为300ii40dd28aIIa0ii8LI故单位长度的内自感为故单位长度的内自感为再求内、外导体间的外自
33、感。再求内、外导体间的外自感。00ooddln22baIIba00ioln82bLLLa02IB0ooddd2I则则o0oln2bLIa故单位长度的外自感为故单位长度的外自感为单位长度的总自感为单位长度的总自感为第3章 电磁场与电磁波电磁场与电磁波长春理工大学65 对两个彼此邻近的闭合回路对两个彼此邻近的闭合回路C1 和回路和回路 C2,当回路,当回路 C1 中通过中通过电流电流 I1 时,时,I1产生的磁场不仅与产生的磁场不仅与回路回路 C1 本身相交链,而且与回路本身相交链,而且与回路 C2 交链,交链的磁链交链,交链的磁链 21 也与也与 I1 成正比,其比例系数成正比,其比例系数121
34、21IM 称为回路称为回路 C1 对回路对回路 C2 的互感系数,简称互感。的互感系数,简称互感。21212IM 3.互感互感同理,回路同理,回路 C2 对回路对回路 C1 的互感为的互感为C1C2I1I2Ro1dl2dl2r1r第3章 电磁场与电磁波电磁场与电磁波长春理工大学66 互感只与回路的几何形状、尺寸、两回路的相对位置以及周围互感只与回路的几何形状、尺寸、两回路的相对位置以及周围 磁介质有关,而与电流无关。磁介质有关,而与电流无关。满足互易关系,即满足互易关系,即M12=M21 当与回路交链的互感磁通与自感磁通具有相同的符号时,互当与回路交链的互感磁通与自感磁通具有相同的符号时,互
35、感系数感系数 M 为正值;反之,则互感系数为正值;反之,则互感系数 M 为负值为负值。互感的特点:互感的特点:第3章 电磁场与电磁波电磁场与电磁波长春理工大学6702IBe0dd2dbSdIzBS由图由图中中可知可知()tan(3)3()zbdbd长直导线与三角形回路长直导线与三角形回路Idz60bddSz穿过三角形回路面积的磁通为穿过三角形回路面积的磁通为 解解 设长直导线中的电流为设长直导线中的电流为I,根据根据安培环路定理,得到安培环路定理,得到 例例3.3.4 如图所示,长直导线与三角如图所示,长直导线与三角形导体回路共面,求它们之间的互感。形导体回路共面,求它们之间的互感。第3章 电
36、磁场与电磁波电磁场与电磁波长春理工大学68031()d2dbdIbd03()ln(1)2Ibbdbd03()ln(1)2bMbdbId因此因此故长直导线与三角形导体回路的互感为故长直导线与三角形导体回路的互感为第3章 电磁场与电磁波电磁场与电磁波长春理工大学693.3.4 恒定磁场的能量恒定磁场的能量1.磁场能量磁场能量 在恒定磁场建立过程中,电源克服感应电动势做功所供给的在恒定磁场建立过程中,电源克服感应电动势做功所供给的能量,就全部转化成磁场能量。能量,就全部转化成磁场能量。电流回路在恒定磁场中受到磁场力的作用而运动,表明恒定电流回路在恒定磁场中受到磁场力的作用而运动,表明恒定 磁场具有能
37、量。磁场具有能量。磁场能量是在建立电流的过程中,由电源供给的。当电流从磁场能量是在建立电流的过程中,由电源供给的。当电流从 零开始增加时,回路中的感应电动势要阻止电流的增加,因零开始增加时,回路中的感应电动势要阻止电流的增加,因 而必须有外加电压克服回路中的感应电动势。而必须有外加电压克服回路中的感应电动势。假定建立并维持恒定电流时,没有热损耗。假定建立并维持恒定电流时,没有热损耗。假定在恒定电流建立过程中,电流的变化足够缓慢,没有辐假定在恒定电流建立过程中,电流的变化足够缓慢,没有辐 射损耗。射损耗。第3章 电磁场与电磁波电磁场与电磁波长春理工大学70 设回路从零开始充电,最终的电流为设回路
38、从零开始充电,最终的电流为 I、交链的磁链为、交链的磁链为。在时刻在时刻 t 的电流为的电流为i=I、磁链为、磁链为=。(01)根据能量守恒定律,此功也就是电流根据能量守恒定律,此功也就是电流为为 I 的载流回路具有的的载流回路具有的磁场能量磁场能量Wm,即,即对对从从0 到到 1 积分,即得到外电源所做的总功为积分,即得到外电源所做的总功为外加电压应为外加电压应为所做的功所做的功101dd2WWII dddddddWu qi tiIt 当当增加为增加为(+d)时,回路中的感应电动势时,回路中的感应电动势:t ddin2m111d222CWIIAlLI tuddin第3章 电磁场与电磁波电磁场
39、与电磁波长春理工大学712.磁场能量密度磁场能量密度 从场的观点来看,磁场能量分布于磁场所在的整个空间。从场的观点来看,磁场能量分布于磁场所在的整个空间。磁场能量密度:磁场能量密度:磁场的总能量:磁场的总能量:积分区域为电场积分区域为电场所在的整个空间所在的整个空间对于线性、各向同性介质,则有对于线性、各向同性介质,则有m12wB Hm1d2VWB H V2m111222wB HH HH2m111ddd222VVVWB H VH H VHV第3章 电磁场与电磁波电磁场与电磁波长春理工大学72 例例3.3.8 同轴电缆的同轴电缆的内导体半径为内导体半径为a,外导体的内、外半径外导体的内、外半径分
40、别为分别为 b 和和 c,如图所示。导体中通有电流,如图所示。导体中通有电流 I,试求同轴电缆,试求同轴电缆中单位长度储存的磁场能量。中单位长度储存的磁场能量。解解:由安培环路定理,得:由安培环路定理,得2222202220IeaaIeabHIcebccbcabc第3章 电磁场与电磁波电磁场与电磁波长春理工大学7322220m322()()2 d22cbIcWcb 三个区域单位长度内的磁场能量分别为三个区域单位长度内的磁场能量分别为2200m120()2 d2216aIIWa 2200m2()2dln224baIIbWa 24220222223ln4()4()Icccbcbbcb第3章 电磁场
41、与电磁波电磁场与电磁波长春理工大学74单位长度内总的磁场能量为单位长度内总的磁场能量为mm1m2m3222422000222223lnln1644()4()WWWWIIIbcccbacbbcb第3章 电磁场与电磁波电磁场与电磁波长春理工大学75磁感应强度(B B)(毕奥沙伐定律)H H 的旋度B B 的散度基本方程磁位()(J J=0)m分界面上衔接条件磁矢位(A A)边值问题数值法解析法分离变量法镜像法有限元法有限差分法电感的计算磁场能量及力磁路及其计算 恒定磁场知识结构框图基本实验定律(安培力定律)第3章 电磁场与电磁波电磁场与电磁波长春理工大学763.4 静态场的边值问题及解的惟一性定理
42、静态场的边值问题及解的惟一性定理 本节内容本节内容 3.4.1 边值问题的类型边值问题的类型 3.4.2 惟一性定理惟一性定理边值问题边值问题:在给定的边界条件下,求解位函数的泊松方程或:在给定的边界条件下,求解位函数的泊松方程或 拉普拉斯方程拉普拉斯方程第3章 电磁场与电磁波电磁场与电磁波长春理工大学773.4.1 边值问题的类型边值问题的类型1|()Sf S已知场域边界面已知场域边界面S 上的位函数值,即上的位函数值,即222|()SfSn111|()Sf S、2|()SfSn第一类边值问题(或狄里赫利问题)第一类边值问题(或狄里赫利问题)已知场域边界面已知场域边界面S 上的位函数的法向导
43、数值,即上的位函数的法向导数值,即 已知场域一部分边界面已知场域一部分边界面S1 上的上的位函数值,而另一部分边界位函数值,而另一部分边界面面S2 上则已知上则已知位函数的法向导数值,即位函数的法向导数值,即第三类边值问题(或混合边值问题)第三类边值问题(或混合边值问题)第二类边值问题(或纽曼问题)第二类边值问题(或纽曼问题)SV第3章 电磁场与电磁波电磁场与电磁波长春理工大学78有限值rrlim 自然边界条件自然边界条件(无界空间)(无界空间)周期边界条件周期边界条件(2)衔接条件衔接条件不同媒质分界面上的边界条件,如不同媒质分界面上的边界条件,如121212,nn1212rS2第3章 电磁
44、场与电磁波电磁场与电磁波长春理工大学7922220 xy例:例:(0,)0,(,)0ya y0(,0)0,(,)xx bU(第一类边值问题)(第一类边值问题)0UbaOxy0UbaOxy0 x0 x22220 xy00,0 xx axx0(,0)0,(,)xx bU(第三类边值问题)(第三类边值问题)例:例:第3章 电磁场与电磁波电磁场与电磁波长春理工大学80 在场域在场域V 的边界面的边界面S上给定上给定 或或 的的值,则泊松方程或拉普拉斯方程在场域值,则泊松方程或拉普拉斯方程在场域V 具具有惟一值。有惟一值。n3.4.2 惟一性定理惟一性定理SV惟一性定理的重要意义惟一性定理的重要意义给出
45、了静态场边值问题具有惟一解的条件给出了静态场边值问题具有惟一解的条件为静态场边值问题的各种求解方法提供了理论依据为静态场边值问题的各种求解方法提供了理论依据为求解结果的正确性提供了判据为求解结果的正确性提供了判据惟一性定理的表述惟一性定理的表述第3章 电磁场与电磁波电磁场与电磁波长春理工大学81惟一性定理的证明惟一性定理的证明反证法反证法:假设解不惟一,则有两个位函数:假设解不惟一,则有两个位函数和和 在场域在场域V内满足同样的方程,即内满足同样的方程,即1222f且在边界面且在边界面S 上有上有令令 ,则则在场域在场域V内内0122220120ff 21,f且在边界面且在边界面S 上满足同样
46、的边界条件。上满足同样的边界条件。0120SSS0120SSSnnn或或或或1110120,SSS2220120SSSnnnSV第3章 电磁场与电磁波电磁场与电磁波长春理工大学82由格林第一恒等式由格林第一恒等式可得到可得到20()0000C对于第一类边界条件:对于第一类边界条件:00S0C 1200Q0C 12对于第二类边界条件:若对于第二类边界条件:若 和和 取同一点取同一点Q为参考点为参考点,则,则12对于第三类边界条件:对于第三类边界条件:100S0C 12SVSVSnV0dd)(0020SVSnVdd)(2第3章 电磁场与电磁波电磁场与电磁波长春理工大学83 本节内容本节内容 3.5
47、.1 镜像法的基本原理镜像法的基本原理 3.5.2 接地导体平面的镜像接地导体平面的镜像 3.5.3 导体球面的镜像导体球面的镜像 3.5.4 导体圆柱面的镜像导体圆柱面的镜像 3.5.5 点电荷与无限大电介质平面的镜像点电荷与无限大电介质平面的镜像 3.5.6 线电流与无限大磁介质平面的镜像线电流与无限大磁介质平面的镜像 3.5 镜像法镜像法第3章 电磁场与电磁波电磁场与电磁波长春理工大学84 当有电荷存在于导体或介质表面附近时,导体和介质表面当有电荷存在于导体或介质表面附近时,导体和介质表面会出现感应电荷或极化电荷,而感应电荷或极化电荷将影响场会出现感应电荷或极化电荷,而感应电荷或极化电荷
48、将影响场的分布。的分布。非均匀感应电荷产生的电位很难求非均匀感应电荷产生的电位很难求解,可以用等效电荷的电位替代解,可以用等效电荷的电位替代1.问题的提出问题的提出几个实例几个实例q q3.5.1 镜像法的基本原理镜像法的基本原理接地导体板附近有接地导体板附近有一个点电荷,如图所一个点电荷,如图所示。示。qq非均匀感应电荷非均匀感应电荷等效电荷等效电荷第3章 电磁场与电磁波电磁场与电磁波长春理工大学85 接地导体球附近有一个点电荷,如图。接地导体球附近有一个点电荷,如图。非均匀感应电荷产生的非均匀感应电荷产生的电位很难求解,可以用电位很难求解,可以用等效电荷的电位替代等效电荷的电位替代 接地导
49、体柱附近有一个线电荷。情况与上例类似,但等效电接地导体柱附近有一个线电荷。情况与上例类似,但等效电 荷为线电荷。荷为线电荷。q q非均匀感应电荷非均匀感应电荷qq等效电荷等效电荷结论结论:所谓镜像法是将不均匀电荷分布的作用等效为点电荷:所谓镜像法是将不均匀电荷分布的作用等效为点电荷 或线电荷的作用。或线电荷的作用。问题问题:这种等效电荷是否存在?:这种等效电荷是否存在?这种等效是否合理?这种等效是否合理?第3章 电磁场与电磁波电磁场与电磁波长春理工大学862.镜像法的原理镜像法的原理 用位于场域边界外虚设的较简单的镜像电荷分布来等效替代用位于场域边界外虚设的较简单的镜像电荷分布来等效替代该边界
50、上未知的较为复杂的电荷分布,从而将原含该边界的非均该边界上未知的较为复杂的电荷分布,从而将原含该边界的非均匀媒质空间变换成无限大单一均匀媒质的空间,使分析计算过程匀媒质空间变换成无限大单一均匀媒质的空间,使分析计算过程得以明显简化的一种间接求解法。得以明显简化的一种间接求解法。在导体形状、几何尺寸、带电状况和媒质几何结构、特性不在导体形状、几何尺寸、带电状况和媒质几何结构、特性不变的前提条件下,根据惟一性定理,只要找出的解答满足在同一变的前提条件下,根据惟一性定理,只要找出的解答满足在同一泛定方程下问题所给定的边界条件,那就是该问题的解答,并且泛定方程下问题所给定的边界条件,那就是该问题的解答