欢迎来到163文库! | 帮助中心 精品课件PPT、教案、教学设计、试题试卷、教学素材分享与下载!
163文库
全部分类
  • 办公、行业>
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 中职>
  • 大学>
  • 各类题库>
  • ImageVerifierCode 换一换
    首页 163文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    数字图象处理-Chapter9-形态学图像处理 课件.ppt

    • 文档编号:3497812       资源大小:3.55MB        全文页数:68页
    • 资源格式: PPT        下载积分:28文币     交易提醒:下载本文档,28文币将自动转入上传用户(三亚风情)的账号。
    微信登录下载
    快捷注册下载 游客一键下载
    账号登录下载
    二维码
    微信扫一扫登录
    下载资源需要28文币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    优惠套餐(点此详情)
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、试题类文档,标题没说有答案的,则无答案。带答案试题资料的主观题可能无答案。PPT文档的音视频可能无法播放。请谨慎下单,否则不予退换。
    3、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者搜狗浏览器、谷歌浏览器下载即可。。

    数字图象处理-Chapter9-形态学图像处理 课件.ppt

    1、Digital Image ProcessingChapter 9Morphological Image Processing2019.10Morphological operations come from the word“morphing”in Biology which means“changing a shape”.MorphingImage morphological operations are used to manipulateobject shapes such as thinning,thickening,and filling.Binary morphological

    2、operations are derived fromset operations.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Concept of a set in binary image morphology:Each set may represent one object.Each pixel(x,y)has its status:belong to a set or not belong to a set.A(A)zz=(z1,z2)Translatio

    3、nReflectionBBBbbwwBfor ,AazaccAzfor ,(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.*For binary images only(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.ABzBAz=Empty setA=Object to be dilatedB=Structuring elementDilate

    4、means“extend”StructuringElement(B)Original image(A)BReflectionIntersect pixelCenter pixelResult of DilationBoundary of the“center pixels”where intersects A zB(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.“Repair”broken characters(Images from Rafael C.Gonzalez

    5、 and Richard E.Wood,Digital Image Processing,2nd Edition.ABzBAz A=Object to be erodedB=Structuring elementErosion means“trim”StructuringElement(B)Original image(A)Intersect pixelCenter pixelResult of ErosionBoundary of the“center pixels”where B is inside A(Images from Rafael C.Gonzalez and Richard E

    6、.Wood,Digital Image Processing,2nd Edition.Remove small objects such as noiseBABAcc)(Proof:where c=complement BAABzABzABzBAcczcczczc )(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.BBABA)(ABBBAzzor=Combination of all parts of A that can completely contain B Op

    7、ening eliminates narrow and small details and corners.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.BBBA )A(Closing fills narrow gaps and notches(Images from Rafael C.Gonza

    8、lez and Richard E.Wood,Digital Image Processing,2nd Edition.BABAccBABBABDBCDCABA .3 then If 2.1BABBABDBCDCBAA .3 then If 2.1Idem potent property:cant change any more(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Finger print enhancement(Images from Rafael C.Go

    9、nzalez and Richard E.Wood,Digital Image Processing,2nd Edition.BAA(A)Original imageBoundary(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.ckkABXX1Original imageResults of region fillingwhere X0=seed pixel p(Images from Rafael C.Gonzalez and Richard E.Wood,Digi

    10、tal Image Processing,2nd Edition.ABXXkk1where X0=seed pixel pX-ray imageof bonesThresholdedimageConnectedcomponents(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Brief Description General binary morphological operation that can be used to look for particular p

    11、atterns in an image.A tool for shape detection Basic operation for binary morphology Almost all the other binary morphological operators can be derived from Hit-and-Miss Transform.Common names:How It Works The structuring element used in the hit-and-miss can contain both foreground and background pi

    12、xels.Operations If the foreground and background pixels in the structuring element exactly match foreground and background pixels in the image,then the pixel underneath the origin of the structuring element is set to the foreground color.If it doesnt match,then that pixel is set to the background co

    13、lor.Effect of the hit-and-miss based right angle convex corner detector After obtaining the locations of corners in each orientation,we can then simply OR all these images together to get the final result.Four structuring elements used for corner finding in binary images Guidelines for Use The hit-a

    14、nd-miss transform is used to look for occurrences of particular binary patterns.It can be used to look for several patterns.Simply by running successive transforms using different structuring elements,and then ORing the results together.The operations of erosion,dilation,opening,closing,thinning and

    15、 thickening can all be derived from the hit-and-miss transform in conjunction with simple set operations.Some structuring elements that can be used for locating various binary features 1)is used to locate isolated points in a binary image.2)is used to locate the end points on a binary skeleton.Note

    16、that this structuring element must be used in all its orientations,and thus the four hit-and-miss passes are required.3a)and 3b)are used to locate the triple points on a skeleton.Both structuring elements must be run in all orientations so eight hit-and-miss passes are required.Some applications of

    17、the hit-and-miss transform The triple points(points where three lines meet)of the skeleton The hit-and-miss transform outputs single foreground pixels at each triple point by structuring elements 3a)and 3b).This image was dilated once using a cross-shaped structuring element in order to mark these i

    18、solated points clearly,and this was then ORed with the original skeleton.The end points of the skeleton The hit-and-miss transform outputs single foreground pixels at each end point by structuring element 2).This image was dilated once using a square-shaped structuring element,and this was then ORed

    19、 with the original skeleton.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.)(XWAXAXAc*where X=shape to be detected W=window that can contain X)(XWABABAc*(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Images from Rafael

    20、C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.iiDAC41)(4,3,2,1 ,1iABXXikik*iconviXD Convex hull has no concave part.Convex hullAlgorithm:where(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Images from Rafael C.Gonzalez and Richard E.Wood,

    21、Digital Image Processing,2nd Edition.cBAABAABA)()(*).)(.(21nBBBABA(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Make an object thinner.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.*)(BAABA.).)(.(21nBBBABA.Make an obje

    22、ct thicker*(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Dot lines are skeletons of thisstructure)()(0ASASkKkwithwhere .)(.(BBBAkB)ABkB)AkB)AASk ()(k timesandkBAkK max(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Imag

    23、es from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.BAX1AHXX)(23)(1812kkBXX*314XXX=thinning=finding end points=dilation at end points=Pruned resultOriginal imagePruned resultAfter Thinning3 timesEnd pointsDilationof end points(Tables from Rafael C.Gonzalez and Richard E

    24、.Wood,Digital Image Processing,2nd Edition.(Tables from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Tables from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Tables from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edit

    25、ion.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.x=dont care(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.bfDyxDytxsyxbytxsfbf),(;)(),(|),(),(maxbfDxDxsxbxsfbf and )(|)()(max2-D Case1-D CaseSubimageOriginal imageMovin

    26、g windowMaxOutput image+Reflectionof BStructuring element BNote:B can be any shape and subimage must have the same shape as reflection of B.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.bfDyxDytxsyxbytxsfbf),(;)(),(|),(),(min2-D Case1-D CasebfDxDxsxbxsfbf and

    27、 )(|)()(minSubimageOriginal imageMoving windowMinOutput image-BStructuring element BNote:B can be any shape and subimage must have the same shape as B.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Original imageAfter dilationAfter erosionDarkerBrighter(Images

    28、 from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.bbfbf)(Opening cuts peaks(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.bbfbf)(Closing fills valleys(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd E

    29、dition.Original imageAfter closingAfter openingReduce whiteobjectsReduce darkobjects(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Smoothing:Perform opening followed by closingOriginal imageAfter smoothing(Images from Rafael C.Gonzalez and Richard E.Wood,Digit

    30、al Image Processing,2nd Edition.Original imageMorphological Gradient)()(bfbfg(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Original imageResults of top-hat transform)(bffh(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.A

    31、lgorithm:1.Perform closing on the image by using successively larger structuring elements until small blobs are vanished.2.Perform opening to join large blobs together3.Perform intensity thresholdingOriginal imageSegmented resultSmall blobLarge blob(Images from Rafael C.Gonzalez and Richard E.Wood,D

    32、igital Image Processing,2nd Edition.Objective:to count the number of particles of each sizeMethod:1.Perform opening using structuring elements of increasing size2.Compute the difference between the original image and the result after each opening operation3.The differenced image obtained in Step 2 a

    33、re normalized and used to construct the size-distribution graph.Original imageSize distribution graph(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Images from Rafael C.Gon

    34、zalez and Richard E.Wood,Digital Image Processing,2nd Edition.Surface of P at edges looklike mountain ridges.POriginalimageP(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.


    注意事项

    本文(数字图象处理-Chapter9-形态学图像处理 课件.ppt)为本站会员(三亚风情)主动上传,其收益全归该用户,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!




    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库