欢迎来到163文库! | 帮助中心 精品课件PPT、教案、教学设计、试题试卷、教学素材分享与下载!
163文库
全部分类
  • 办公、行业>
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 中职>
  • 大学>
  • 各类题库>
  • ImageVerifierCode 换一换
    首页 163文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2020届高考数学(理)一轮复习讲义 2.3 函数的奇偶性与周期性.docx

    • 文档编号:342294       资源大小:268.25KB        全文页数:22页
    • 资源格式: DOCX        下载积分:5文币     交易提醒:下载本文档,5文币将自动转入上传用户(和和062)的账号。
    微信登录下载
    快捷注册下载 游客一键下载
    账号登录下载
    二维码
    微信扫一扫登录
    下载资源需要5文币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    优惠套餐(点此详情)
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、试题类文档,标题没说有答案的,则无答案。带答案试题资料的主观题可能无答案。PPT文档的音视频可能无法播放。请谨慎下单,否则不予退换。
    3、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者搜狗浏览器、谷歌浏览器下载即可。。

    2020届高考数学(理)一轮复习讲义 2.3 函数的奇偶性与周期性.docx

    1、公众号码:王校长资源站2.3函数的奇偶性与周期性最新考纲考情考向分析1.结合具体函数,了解函数奇偶性的含义2.会运用函数图象理解和研究函数的奇偶性3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.以理解函数的奇偶性、会用函数的奇偶性为主,常与函数的单调性、周期性交汇命题,加强函数与方程思想、转化与化归思想的应用意识,题型以选择、填空题为主,中等偏上难度.1函数的奇偶性奇偶性定义图象特点奇函数设函数yf(x)的定义域为D,如果对D内的任意一个x,都有xD,且f(x)f(x),则这个函数叫做奇函数关于坐标原点对称偶函数设函数yg(x)的定义域为D,如果对D内的任意一个x,都有xD

    2、,且g(x)g(x),则这个函数叫做偶函数关于y轴对称2.周期性(1)周期函数:对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(xT)f(x),那么就称函数yf(x)为周期函数,称T为这个函数的周期(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期概念方法微思考1如果已知函数f(x),g(x)的奇偶性,那么函数f(x)g(x),f(x)g(x)的奇偶性有什么结论?提示在函数f(x),g(x)公共定义域内有:奇奇奇,偶偶偶,奇奇偶,偶偶偶,奇偶奇2已知函数f(x)满足下列条件,你能得到什么结论?(1

    3、)f(xa)f(x)(a0)(2)f(xa)(a0)(3)f(xa)f(xb)(ab)提示(1)T2|a|(2)T2|a|(3)T|ab|题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)函数yx2,x(0,)是偶函数()(2)偶函数的图象不一定过原点,奇函数的图象一定过原点()(3)若函数yf(xa)是偶函数,则函数yf(x)关于直线xa对称()题组二教材改编2已知函数f(x)是定义在R上的奇函数,且当x0时,f(x)x(1x),则f(1)_.答案2解析f(1)122,又f(x)为奇函数,f(1)f(1)2.3设f(x)是定义在R上的周期为2的函数,当x1,1)时,f(x)

    4、则f_.答案1解析ff4221.4.设奇函数f(x)的定义域为5,5,若当x0,5时,f(x)的图象如图所示,则不等式f(x)0的解集为_答案(2,0)(2,5解析由图象可知,当0x0;当2x5时,f(x)0,又f(x)是奇函数,当2x0时,f(x)0,当5x0.综上,f(x)0的解集为(2,0)(2,5题组三易错自纠5已知f(x)ax2bx是定义在a1,2a上的偶函数,那么ab的值是()A B. C. D答案B解析f(x)ax2bx是定义在a1,2a上的偶函数,a12a0,a.又f(x)f(x),b0,ab.6已知定义在R上的奇函数f(x)满足f(x3)f(x),且当x时,f(x)x3,则f

    5、_.答案解析由f(x3)f(x)知函数f(x)的周期为3,又函数f(x)为奇函数,所以fff3.题型一函数奇偶性的判断例1 判断下列函数的奇偶性:(1)f(x);(2)f(x);(3)f(x)解(1)由得x236,解得x6,即函数f(x)的定义域为6,6,关于原点对称,f(x)0.f(x)f(x)且f(x)f(x),函数f(x)既是奇函数又是偶函数(2)由得定义域为(1,0)(0,1),关于原点对称x20,|x2|2x,f(x).又f(x)f(x),函数f(x)为奇函数(3)显然函数f(x)的定义域为(,0)(0,),关于原点对称当x0,则f(x)(x)2xx2xf(x);当x0时,x0,则f

    6、(x)(x)2xx2xf(x);综上可知,对于定义域内的任意x,总有f(x)f(x),函数f(x)为奇函数思维升华 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(x)是否具有等量关系在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f(x)f(x)0(奇函数)或f(x)f(x)0(偶函数)是否成立跟踪训练1 (1)下列函数中,既不是奇函数也不是偶函数的是()Af(x)xsin 2x Bf(x)x2cos xCf(x)3x Df(x)x2tan x答案D解析对于选项A,函数的定义域为R,f(x

    7、)xsin 2(x)(xsin 2x)f(x),所以f(x)xsin 2x为奇函数;对于选项B,函数的定义域为R,f(x)(x)2cos(x)x2cos xf(x),所以f(x)x2cos x为偶函数;对于选项C,函数的定义域为R,f(x)3xf(x),所以f(x)3x为奇函数;只有f(x)x2tan x既不是奇函数也不是偶函数故选D.(2)已知函数f(x),g(x),则下列结论正确的是()Ah(x)f(x)g(x)是偶函数Bh(x)f(x)g(x)是奇函数Ch(x)f(x)g(x)是奇函数Dh(x)f(x)g(x)是偶函数答案A解析易知h(x)f(x)g(x)的定义域为x|x0因为f(x)g

    8、(x)f(x)g(x),所以h(x)f(x)g(x)是偶函数故选A.题型二函数的周期性及其应用1若函数f(x)(xR)是周期为4的奇函数,且在0,2上的解析式为f(x)则ff_.答案解析由于函数f(x)是周期为4的奇函数,所以ffffffffsin .2已知定义在R上的函数f(x)满足f(2)2,且对任意的x都有f(x2),则f(2 020)_.答案2解析由f(x2),得f(x4)f(x),所以函数f(x)的周期为4,所以f(2 020)f(4)因为f(22),所以f(4)2.故f(2 020)2.3(2017山东)已知f(x)是定义在R上的偶函数,且f(x4)f(x2)若当x3,0时,f(x

    9、)6x,则f(919)_.答案6解析f(x4)f(x2),f(x2)4)f(x2)2),即f(x6)f(x),f(x)是周期为6的周期函数,f(919)f(15361)f(1)又f(x)是定义在R上的偶函数,f(1)f(1)6,即f(919)6.4设定义在R上的函数f(x)同时满足以下条件:f(x)f(x)0;f(x)f(x2);当0x1时,f(x)2x1,则ff(1)ff(2)f_.答案1解析依题意知:函数f(x)为奇函数且周期为2,则f(1)f(1)0,f(1)f(1),即f(1)0.ff(1)ff(2)ff0ff(0)ffff(0)fff(0)12011.思维升华 利用函数的周期性,可将

    10、其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题题型三函数性质的综合应用命题点1求函数值或函数解析式例2 (1)设f(x)是定义在R上周期为4的奇函数,若在区间2,0)(0,2上,f(x)则f(2 021)_.答案解析设0x2,则2x0时,x0时,f(x)x2ax1a,若函数f(x)为R上的减函数,则a的取值范围是_答案1,0解析因为函数f(x)是R上的奇函数,所以f(0)0,若函数f(x)为R上的减函数,则满足当x0时,函数为减函数,且1a0,此时即即1a0.命题点3利用函数的性质解不等式例4 (1)已知定义在R上的偶函数f(x)在0,)上单调递增,若f(ln x

    11、)f(2),则x的取值范围是()A(0,e2) B(e2,)C(e2,) D(e2,e2)答案D解析根据题意知,f(x)为偶函数且在0,)上单调递增,则f(ln x)f(2)|ln x|2,即2ln x2,解得e2xf(2x1)成立的x的取值范围为_答案解析由已知得函数f(x)为偶函数,所以f(x)f(|x|),由f(x)f(2x1),可得f(|x|)f(|2x1|)当x0时,f(x)ln(1x),因为yln(1x)与y在(0,)上都单调递增,所以函数f(x)在(0,)上单调递增由f(|x|)f(|2x1|),可得|x|2x1|,两边平方可得x2(2x1)2,整理得3x24x10,解得x0 B

    12、减函数且f(x)0 D增函数且f(x)0,又函数f(x)为奇函数,所以在区间上函数也单调递增,且f(x)0.由ff(x)知,函数的周期为,所以在区间上,函数单调递增且f(x)0.故选D.(2)设f(x)是周期为2的奇函数,当0x1时,f(x)2x(1x),则f_.答案解析由题意可知,fff2.(3)已知函数g(x)是R上的奇函数,且当xf(x),则实数x的取值范围是_答案(3,2)解析g(x)是奇函数,当x0时,g(x)g(x)ln(1x),易知f(x)在R上是增函数,由f(6x2)f(x),可得6x2x,即x2x60,3x0.给出下列命题:f(3)0;直线x6是函数yf(x)的图象的一条对称

    13、轴;函数yf(x)在9,6上为增函数;函数yf(x)在9,9上有四个零点其中所有正确命题的序号为_答案解析f(36)f(3)f(3)又f(x)是R上的偶函数,所以f(3)0,故正确;由知f(x6)f(x),所以f(x)的周期为6.又因为f(x)是R上的偶函数,所以f(x6)f(x),而f(x)的周期为6,所以f(x6)f(6x),f(x)f(x6),所以f(6x)f(6x),所以直线x6是函数yf(x)的图象的一条对称轴故正确;当x1,x20,3,且x1x2时,都有0,所以函数yf(x)在0,3上为增函数因为f(x)是R上的偶函数,所以函数yf(x)在3,0上为减函数,而f(x)的周期为6,所

    14、以函数yf(x)在9,6上为减函数故错误;f(3)0,f(x)的周期为6,所以f(9)f(3)f(3)f(9)0,所以函数yf(x)在9,9上有四个零点故正确二、函数性质的综合应用例2 (1)(2018全国)已知f(x)是定义域为(,)的奇函数,满足f(1x)f(1x)若f(1)2,则f(1)f(2)f(3)f(50)等于()A50 B0 C2 D50答案C解析f(x)是奇函数,f(x)f(x),f(1x)f(x1)f(1x)f(1x),f(x1)f(x1),f(x2)f(x),f(x4)f(x2)f(x)f(x),函数f(x)是周期为4的周期函数由f(x)为奇函数且定义域为R得f(0)0,又

    15、f(1x)f(1x),f(x)的图象关于直线x1对称,f(2)f(0)0,f(2)0.又f(1)2,f(1)2,f(1)f(2)f(3)f(4)f(1)f(2)f(1)f(0)20200,f(1)f(2)f(3)f(4)f(49)f(50)012f(49)f(50)f(1)f(2)202.故选C.(2)已知定义在R上的奇函数f(x)满足f(x4)f(x),且在区间0,2上是增函数,则()Af(25)f(11)f(80)Bf(80)f(11)f(25)Cf(11)f(80)f(25)Df(25)f(80)f(11)答案D解析因为f(x)满足f(x4)f(x),所以f(x8)f(x),所以函数f(

    16、x)是以8为周期的周期函数,则f(25)f(1),f(80)f(0),f(11)f(3)由f(x)是定义在R上的奇函数,且满足f(x4)f(x),得f(11)f(3)f(1)f(1)因为f(x)在区间0,2上是增函数,f(x)在R上是奇函数,所以f(x)在区间2,2上是增函数,所以f(1)f(0)f(1),即f(25)f(80)f(),则a的取值范围是_答案解析f(2|a1|)f()f(),又由已知可得f(x)在(0,)上单调递减,2|a1|,|a1|,a2的解集为()A(2,) B.(2,)C.(,) D(,)答案B解析f(x)是R上的偶函数,且在(,0上是减函数,所以f(x)在0,)上是增

    17、函数,所以f(log2x)2f(1)f(|log2x|)f(1)|log2x|1log2x1或log2x2或0x.6已知偶函数f(x)对于任意xR都有f(x1)f(x),且f(x)在区间0,1上是单调递增的,则f(6.5),f(1),f(0)的大小关系是()Af(0)f(6.5)f(1)Bf(6.5)f(0)f(1)Cf(1)f(6.5)f(0)Df(1)f(0)f(6.5)答案A解析由f(x1)f(x),得f(x2)f(x1)f(x),函数f(x)的周期是2.函数f(x)为偶函数,f(6.5)f(0.5)f(0.5),f(1)f(1)f(x)在区间0,1上是单调递增的,f(0)f(0.5)f

    18、(1),即f(0)f(6.5)0时,f(x)ln x,则f的值为_答案ln 2解析由已知可得fln 2,所以ff(2)又因为f(x)是奇函数,所以ff(2)f(2)ln 2. 9奇函数f(x)在区间3,6上是增函数,且在区间3,6上的最大值为8,最小值为1,则f(6)f(3)的值为_答案9解析由于f(x)在3,6上为增函数,所以f(x)的最大值为f(6)8,f(x)的最小值为f(3)1,因为f(x)为奇函数,所以f(3)f(3)1,所以f(6)f(3)819.10若函数f(x)是定义在R上的偶函数,且在区间0,)上是单调递增的如果实数t满足f(ln t)f2f(1),那么t的取值范围是_答案解

    19、析由于函数f(x)是定义在R上的偶函数,所以f(ln t)f,由f(ln t)f2f(1),得f(ln t)f(1)又函数f(x)在区间0,)上是单调递增的,所以|ln t|1,即1ln t1,故te.11已知函数f(x)是奇函数(1)求实数m的值;(2)若函数f(x)在区间1,a2上单调递增,求实数a的取值范围解(1)设x0,所以f(x)(x)22(x)x22x.又f(x)为奇函数,所以f(x)f(x),于是x0时,f(x)x22xx2mx,所以m2.(2)要使f(x)在1,a2上单调递增,结合f(x)的图象(如图所示)知所以10,f(x2)对任意xR恒成立,则f(2 023)_.答案1解析

    20、因为f(x)0,f(x2),所以f(x4)f(x2)2f(x),即函数f(x)的周期是4,所以f(2 023)f(50641)f(1)因为函数f(x)为偶函数,所以f(2 023)f(1)f(1)当x1时,f(12),得f(1).由f(x)0,得f(1)1,所以f(2 023)f(1)1.14已知函数f(x)x32x,若f(1)0(a0且a1),则实数a的取值范围是_答案(0,1)(3,)解析因为函数f(x)x32x是奇函数,且在R上是增函数,f(1)0,所以f(1)f(1),所以1,所以或所以a(0,1)(3,)15已知f(x)是定义在R上的奇函数,f(x1)是偶函数,当x(2,4)时,f(

    21、x)|x3|,则f(1)f(2)f(3)f(4)f(2 020)_.答案0解析因为f(x)为奇函数,f(x1)为偶函数,所以f(x1)f(x1)f(x1),所以f(x2)f(x),所以f(x4)f(x2)f(x),所以函数f(x)的周期为4,所以f(4)f(0)0,f(3)f(1)f(1)在f(x1)f(x1)中,令x1,可得f(2)f(0)0,所以f(1)f(2)f(3)f(4)0.所以f(1)f(2)f(3)f(4)f(2 020)0.16已知函数f(x)sin xx,对任意的m2,2,f(mx2)f(x)0恒成立,求x的取值范围解易知f(x)在R上为单调递增函数,且f(x)为奇函数,故f(mx2)f(x)0等价于f(mx2)f(x)f(x),则mx2x,即mxx20对所有m2,2恒成立,令h(m)mxx2,m2,2,此时,只需即可,解得2x.公众号码:王校长资源站


    注意事项

    本文(2020届高考数学(理)一轮复习讲义 2.3 函数的奇偶性与周期性.docx)为本站会员(和和062)主动上传,其收益全归该用户,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!




    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库