欢迎来到163文库! | 帮助中心 精品课件PPT、教案、教学设计、试题试卷、教学素材分享与下载!
163文库
全部分类
  • 办公、行业>
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 中职>
  • 大学>
  • 各类题库>
  • ImageVerifierCode 换一换
    首页 163文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    江苏省连云港市2018-2019学年高二上学期期末考试数学试题(理科) Word版含解答.doc

    • 文档编号:2998872       资源大小:849KB        全文页数:17页
    • 资源格式: DOC        下载积分:5.98文币     交易提醒:下载本文档,5.98文币将自动转入上传用户(四川三人行教育)的账号。
    微信登录下载
    快捷注册下载 游客一键下载
    账号登录下载
    二维码
    微信扫一扫登录
    下载资源需要5.98文币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    优惠套餐(点此详情)
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、试题类文档,标题没说有答案的,则无答案。带答案试题资料的主观题可能无答案。PPT文档的音视频可能无法播放。请谨慎下单,否则不予退换。
    3、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者搜狗浏览器、谷歌浏览器下载即可。。

    江苏省连云港市2018-2019学年高二上学期期末考试数学试题(理科) Word版含解答.doc

    1、20182019学年度第一学期期末考试试题高二数学(选修物理)一、填空题请把答案填写在答题纸相应位置上1.双曲线的渐近线方程是 (用一般式表示)【答案】【解析】由题意得在双曲线中,所以双曲线的准线方程为。答案:2.焦点为的抛物线标准方程是_.【答案】【解析】【分析】设抛物线标准方程为x22py,由焦点坐标公式可得p值,将p值代入抛物线方程即可得答案【详解】抛物线的焦点为(0,-5)在y轴上,设抛物线的标准方程为x22py,则有5,解可得p10,故抛物线标准方程为x220y;故答案为:x220y【点睛】本题考查抛物线的标准方程,注意分析抛物线焦点的位置,进而设出抛物线的标准方程3.命题“若,则”

    2、的逆否命题为_.【答案】若,则【解析】【分析】根据逆否命题的定义进行求解即可【详解】命题若p则q的逆否命题为若q则p,则命题“若,则”的逆否命题为:若x20,则x0,故答案为:若x20,则x0【点睛】本题考查四种命题之间的关系,根据逆否命题的定义是解决本题的关键4.若,且,则的最大值是_.【答案】1【解析】试题分析:根据约束条件画出可行域,当直线z=x-y过点A(1,0)时,z最大值,最大值是1,考点:简单的线性规划,以及利用几何意义求最值5.已知双曲线与椭圆有公共焦点且离心率为,则其标准方程为_.【答案】【解析】【分析】求出椭圆的焦点坐标得到双曲线的焦点坐标,利用双曲线的离心率,求解a,c,

    3、得到b,即可求出双曲线方程【详解】双曲线与椭圆有公共焦点,可得c5,双曲线的离心率为,可得a3,则b4,则该双曲线方程为:故答案为:【点睛】本题考查椭圆以及双曲线的简单性质的应用,考查计算能力6.已知函数,则_.【答案】3【解析】【分析】对函数求导,将x=代入即可得到答案.【详解】f(x)=2cos2x+,则故答案为:3【点睛】本题考查导数公式的应用,考查计算能力.7.函数的极小值是_.【答案】【解析】【分析】求函数的导数,由f(x)0,得增区间,由f(x)0,得减区间,从而可确定极值【详解】函数,定义域为,则f(x)x-,由f(x)0得x1,f(x)单调递增;当x0或0x1时,f(x)0,f

    4、(x)单调递减,故x1时,f(x)取极小值故答案为:【点睛】本题考查导数的运用:求单调区间和求极值,注意判断极值点的条件,考查运算能力,属于基础题8.已知,若是的必要不充分条件,则实数的取值范围是_.【答案】【解析】【分析】根据充分条件和必要条件的定义转化为对应关系进行求解即可【详解】x2(a+1)x+a0即(x1)(xa)0,p是q的必要不充分条件,当a1时,由(x1)(x1)0得x1,此时不满足条件,当a1时,由(x1)(xa)0得ax1,此时不满足条件当a1时,由(x1)(xa)0得1xa,若p是q的必要不充分条件,则a3,即实数a的取值范围是(3,+),故答案为:(3,+)【点睛】本题

    5、主要考查充分条件和必要条件的应用,根据定义转化为不等式的包含关系是解决本题的关键.9.若直线是曲线的一条切线,则实数的值是_.【答案】1【解析】【分析】设出切点坐标P(x0,ex0),利用导数的几何意义写出在点P处的切线方程,由直线yx+b是曲线yex的切线,根据对应项系数相等可求出实数b的值【详解】yex,yex,设切点为P(x0,ex0),则在点P处的切线方程为yex0ex0(xx0),整理得yex0xex0x0+ex0,直线是yx+b是曲线yex的切线,ex01,x00,b1故答案为:1【点睛】本题考查导数的几何意义,考查曲线在某点处的切线方程的求法,属于基础题.10.已知是椭圆上一点,

    6、为椭圆的两个焦点,则的最大值与最小值的差是_.【答案】1【解析】试题分析:设P(x0,y0),|PF1| =2+x0,|PF2| =2-x0,|PF1|PF2|=4-x02,|PF1|PF2|的最大值是4,最大值是3,的最大值与最小值之差1。考点:本题主要考查椭圆的标准方程及几何性质。点评:应用焦半径公式,将最值问题转化成闭区间上二次函数的最值问题。11.设集合,若,则实数的取值范围是_.【答案】【解析】【分析】若AB,得x2+2(1a)x+3a0在x0,3有解,分离变量再构造函数g(t),转为求函数最值即可得解.【详解】集合Ax|x2+2(1a)x+3a0,Bx|0x3,若AB,得x2+2(

    7、1a)x+3a0在x0,3有解,即(2x+1)ax2+2x+3在x0,3有解,设t2x+1,则t1,7,则x,则a,设g(t),t1,7,由对勾函数的性质可得yg(t)在(1,3)为减函数,在(3,7)上为增函数,又g(t)的最小值为g(3)2,所以实数a的取值范围是2,+),故答案为:2,+)【点睛】本题考查不等式有解问题及集合交集的运算,考查转化与化归思想,考查对勾函数图像的性质,属中档题12.已知,R+,且,则的最小值是_.【答案】【解析】【分析】根据a,b0,及a+3b4ab即可得出,则,展开根据基本不等式即可得最小值【详解】a,bR+,且a+3b4ab; ;3a+4b的最小值为故答案

    8、为:【点睛】本题考查基本不等式在求最值时的应用,注意1的妙用.13.已知椭圆过点,其短轴长的取值范围是,则椭圆离心率的取值范围是_.【答案】【解析】【分析】由椭圆的短轴长的取值范围,结合a,b关系,即可得椭圆的离心率的范围【详解】根据题意,椭圆过点,则,短轴长2b的取值范围是,可得b2,即e,故答案为:【点睛】本题考查椭圆的几何性质,求解椭圆的离心率的范围,注意短轴长为2b14.已知,若,使成立,则实数的取值范围是_.【答案】【解析】【分析】问题等价于“当xe,e2时,有f(x)maxf(x)max+a”,利用导数性质结合分类讨论思想,能求出实数a的取值范围【详解】若,使成立,等价于“当xe,

    9、e2时,有f(x)maxf(x)max+a”,当xe,e2时,lnx1,2,1,f(x)a+()2+a,f(x)max+a,问题等价于:“当xe,e2时,有f(x)max”,当a,即a时,f(x)a+()2+a0,f(x)在e,e2上为减函数,则f(x)maxf(e)eaee(1a),a1,当a0,即0a时,xe,e2,1,f(x)a+,由复合函数的单调性知f(x)在e,e2上为增函数,存在唯一x0(e,e2),使f(x0)0且满足:f(x)在e,x0)递减,在(x0,e2递增,f(x)maxf(e)或f(e2),而f(e2)ae2,故ae2,解得:a,无解舍去;综上,实数a的取值范围为故答案

    10、为:【点睛】本题主要考查函数、导数等基本知识考查运算求解能力及化归思想、函数方程思想、分类讨论思想的合理运用二、解答题请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤15.已知:函数在R上是单调增函数,:(1)若为真命题,求实数的取值范围;(2)若为假命题,求实数的取值范围【答案】(1) (2)【解析】【分析】(1)函数f(x)mx2sinx在R上是单调递增函数得xR时,f(x)0恒成立,即m2cosx0,即m2cosx恒成立,得m范围,取补集即可;(2)解二次不等式m2m60,利用复合命题及其真假列不等式组可得解【详解】(1)由函数在R上是单调递增函数,得R时,恒成立,且无

    11、连续区间上的导数为0,则 ,恒成立,所以,则若为真命题,则 (2)由,得,则,所以当为假命题时,或 又为假命题,则,都是假命题,所以实数满足解得【点睛】本题考查复合命题及其真假、利用导数研究函数的单调性及解二次不等式,属简单题16.如图,在棱长为3的正方体中,点在棱上,且 (1)求异面直线与所成角的余弦值;(2)求二面角的正弦值【答案】(1)(2)【解析】【分析】(1)以为原点,分别以,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,求和, 利用空间向量的数量积求解即可(2)求平面PAD1和平面BAD1的法向量,利用空间向量的数量积求解即可【详解】如图建立以为原点,分别以,的方向为轴,轴,

    12、轴的正方向的空间直角坐标系,因为棱长为3,且可得, (1)则,所以 (2)依题意,可得设为平面的法向量,则即不妨令,可得;设为平面的法向量,则即不妨令,可得因此有,于是 所以,二面角的正弦值为【点睛】本题考查空间向量的数量积的应用,二面角与异面直线所成角的求法,考查空间想象能力以及计算能力17.如图,在等腰直角中, ,点,分别为,边上的动点,且 设,的面积为(1)试用的代数式表示;(2)当为何值时,的面积最大?求出最大面积【答案】(1)(2)当时,的面积最大,最大面积为 【解析】【分析】(1)先已知条件得到,利用相似成比例化简即可得到EC.(2)利用面积公式表示出面积,然后求导,判断单调性,由

    13、单调性即可得到最值.【详解】(1)在中, ,又,则 在和中,由得, 所以因直角中,则,所以,代入 ; (2)的面积为,则, 则 ,得 当时,所以在上单调递增;当时,所以在上单调递减所以当时, 当时,的面积最大,最大面积为【点睛】本题考查函数解析式的求解,考查利用导数求函数最值问题,属于基础题.18.已知抛物线经过点,过作直线与抛物线相切(1)求直线的方程;(2)如图,直线,与抛物线交于,两点,与直线交于点,是否存在常数,使【答案】(1)(2)见解析【解析】【分析】(1)将T(2,2)代入y22px,得抛物线方程,设直线l方程与抛物线方程联立,通过0得k2,得直线l方程.(2)设直线l的方程为y

    14、x+b,联立方程组解得P(22b,2b),则PT25b2,设A(x1,y1),B(x2,y2),与抛物线联立,利用弦长公式,转化求解即可【详解】(1)将代入,则,所以抛物线方程为设直线的方程为,联立方程组消得,因相切,由得,所以直线的方程为 设直线的方程为,联立方程组消得,因相切,由得,所以直线的方程为 (2)因,设直线的方程为,联立方程组解得,则 设,联立方程组得,所以,; ,所以存在实数,使 【点睛】本题考查直线与抛物线的位置关系的综合应用,考查设而不求思想方法的应用,考查分析问题解决问题的能力19.已知椭圆的离心率,且经过点,为椭圆的四个顶点(如图),直线过右顶点且垂直于轴(1)求该椭圆

    15、的标准方程;(2)为上一点(轴上方),直线,分别交椭圆于,两点,若,求点的坐标【答案】(1)(2)【解析】【分析】(1)利用椭圆的离心率和经过的点,列方程组求解即可(2)设P(2,m),m0,得直线PC方程与椭圆联立,利用韦达定理,推出E的坐标, 同理求F点横坐标,由SPCD2SPEF,转化求解即可【详解】(1)因的离心率,且经过点,所以解得,所以椭圆标准方程为(2)由(1)知椭圆方程为,所以直线方程为, 设,则直线的方程为, 联立方程组消得,所以点的横坐标为;又直线的方程为联立方程组消得,所以点的横坐标为 由得,则有,则,化简得,解得,因为,所以,所以点的坐标为【点睛】本题考查椭圆标准方程的

    16、求法和直线与椭圆的位置关系的应用,考查分析问题解决问题的能力和转化思想的应用.20.已知函数,R(1)若函数在上单调递减,在上单调递增,求的值;(2)求函数在上的最大值;(3)当时,若有3个零点,求的取值范围【答案】(1)(2)(3)【解析】【分析】(1)求出函数的导数,根据函数的单调性求出a值即可;(2)求出函数导数,通过讨论a的范围,求出函数最大值即可;(3)求出函数导数,根据函数的单调性求出函数的极值,结合图象判断a的范围即可【详解】(1)由,则因函数在上单调递减,在上单调递增,得,当时,显然满足要求,所以(2)因 ,当,即时,在上单调递增,则; 当,即时,在上单调递减,则;当,即时,当

    17、时,;当时,所以在递减,在递增,则又,故当时,;当时,;当时,综上,在上的最大值 (3)因得或;又,单调递增;,单调递减;,单调递增,则, 令,因R,所以R,所以与图像相同则的零点个数即为方程不同实数解的个数当(如图1),即时,有唯一负实数解,则存在使,而只有一个实数解,故只有一个实数解当(如图2),即时,有两个不同实数解,因,与各有一个实数解,故有两个不同的实数解 当时(如图3),即,有三个不同实数解,因,有一个实数解,则与只能各有一个实数解则由(2)可知在单调递减,单调递增,则即由得,当时,因,故有综上,时,若有3个零点,则的取值范围是【点睛】本题考查了函数的单调性,极值,最值,零点问题,考查导数的应用以及分类讨论思想,转化思想,数形结合,综合性较强


    注意事项

    本文(江苏省连云港市2018-2019学年高二上学期期末考试数学试题(理科) Word版含解答.doc)为本站会员(四川三人行教育)主动上传,其收益全归该用户,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!




    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库