欢迎来到163文库! | 帮助中心 精品课件PPT、教案、教学设计、试题试卷、教学素材分享与下载!
163文库
全部分类
  • 办公、行业>
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 中职>
  • 大学>
  • 各类题库>
  • ImageVerifierCode 换一换
    首页 163文库 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019年上海科技大学考研专业课试题992数值代数.pdf

    • 文档编号:2801539       资源大小:144.34KB        全文页数:4页
    • 资源格式: PDF        下载积分:13文币     交易提醒:下载本文档,13文币将自动转入上传用户(雁南飞1234)的账号。
    微信登录下载
    快捷注册下载 游客一键下载
    账号登录下载
    二维码
    微信扫一扫登录
    下载资源需要13文币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    优惠套餐(点此详情)
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、试题类文档,标题没说有答案的,则无答案。带答案试题资料的主观题可能无答案。PPT文档的音视频可能无法播放。请谨慎下单,否则不予退换。
    3、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者搜狗浏览器、谷歌浏览器下载即可。。

    2019年上海科技大学考研专业课试题992数值代数.pdf

    1、第 1 页 共 4 页 上海科技大学 2019 年攻读硕士学位研究生 招生考试试题上海科技大学 2019 年攻读硕士学位研究生 招生考试试题 科目代码:992 科目名称:数值代数 考生须知: 科目代码:992 科目名称:数值代数 考生须知: 1. 本试卷满分为 150 分,全部考试时间总计 180 分钟。 2. 所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。 一、考虑矩阵A ? ?31?2?12?22315?4?16202?1. 找出一个单位下三角阵L ?和一个上三角阵U ?,使得A ? LU。 (8分)2. 使用题 1 中获得的LU分解(即三角分解) ,求解线性方程组Ax ? y

    2、,其中y ? ?0010?。 (8 分)3. 求A的行列式。 (4 分)4. 题 1 获得的L ?和U ?是否是唯一满足A ? LU的单位下三角阵和上三角阵?为什么?(5 分)5. 是否存在一个A的 Cholesky 分解?如果你认为存在,求出该 Cholesky 分解;如果你认为不存在,请说明理由。 (5 分)二、考虑矩阵A ?,m ? n。假设 A 共有k个非零的奇异值? ? ?,1 ? k ? n,并且令 ? ?为对角元是?,?,?的对角阵。1. 证明存在U ?和 V ?满足U?U ? 和V?V ? I(I表示单位矩阵) ,科目代码:992科目名称:数值代数第 2 页 共 4 页 使得

    3、A ? UV?。另外,这样的U 和 V是否一定唯一?为什么?(10 分)2. 证明上述V的每一列均为A?A的一个特征向量。另外,找出其对应的特征值。(6 分)3. 令y ?并假设A的秩为n。用上述U,V, 以及 y 来表示线性方程组 Ax ?y 的最小二乘解。 (7 分)4. 现在考虑m ? n ? k的情况。证明A 关于 2 范数的条件数?A? ? A ? A?(7 分)三、假设我们获得了 m 组数据?s?,g?,i ? 1,2,.,m,s? ,g? ,并希望找到x?,x?,x? ,1 ? 使得?x?s? x?s? ? x?s? x?g?最小。已知上述问题可以表达成一个最小二乘问题min?

    4、Ax ? b ?,其中x ? ?x?x? ?。1. 用?s?,g?, i ? 1,2,.,m表示出最小二乘问题中的矩阵A ?和向量b ?。(8 分)2. 上述最小二乘问题的最小二乘解是否一定唯一?如果是,请阐述理由;否则请提供数据?s?,g?, i ? 1,2,.,m需要满足的条件, 以使最小二乘解唯一。(7 分)3. 现假设该最小二乘问题具有唯一的最小二乘解。 我们对 A 进行 QR 分解, 得到A ? Q? R 0?其中Q ? ?q?q? ?是正交矩阵,R ?是上三角阵。证明R 为满秩。另外,用q?,q? ?,R以及 b 来表示该最小二乘解。 (10 分)4. 继续假设该最小二乘问题具有唯

    5、一的最小二乘解。写出采用最速下降法解决该最小二乘问题的算法形式。方便起见,算法可直接使用A 和 b 进行表示。 (10分)四、 考虑采用共轭梯度法求解线性方程组Ax ? b, 其中A ?为对称正定矩阵,b ?。令x ?为该线性方程组的解。已知共轭梯度法可表达成以下形式:科目代码:992科目名称:数值代数第 3 页 共 4 页 x? x? ?d? , k ? 0,1,2,其中? 为步长, d? ?为搜索方向, x? ?为k次迭代后对于x的估计值。已知共轭梯度法的搜索方向满足span?d?,d? ? span?r?,Ar?,A?r?,A?r?,其中r? b ? Ax?。1. 证明对于所有的k ?

    6、1,b ? Ax? r? A span?r?,Ar?,A?r?,A?r?(7 分)2. 已知共轭梯度法产生的序列?x?满足?x? x?A?x? x? ? 2?A? ? 1?A? ? 1?x? x?A?x? x?, k ? 0,1,2,其中?A? ? A ? A?为 A 关于 2 范数的条件数。根据上面的不等式给出?x?关于 1 范数的收敛速度,即找出C ? 0和q ?0,1?,使得 x? x? Cq? x? x?, k ? 0,1,2,(10 分)3. 令k ? 2。假设存在z x? span?r?,Ar?,A?r?,A?r?使得不等式?z?Az ?b?z ?x?Ax ? b?x对于所有的x

    7、x? span?r?,Ar?,A?r?,A?r?都成立。找出z和共轭梯度法产生的 x?之间的关系。(5 分)4. 现在令A ? ?2112?, b ? ?10?并且让共轭梯度法的初始值x? ?00?。 求出共轭梯度法每次迭代产生的步长和搜索方向。 (8 分)五、考虑采用具有如下形式的单步线性定常迭代法求解线性方程组Ax ? b,其中 A ?为非奇异,b ?:x?x? g,k ? 0,1,2科目代码:992科目名称:数值代数第 4 页 共 4 页 其中M ?,g ?,x? ?。1. 证明如果max?|M?|? 1,其中M? 为矩阵M第i行第j列的元素,那么上述单步线性定常迭代法产生的序列?x?收

    8、敛。 (5 分)2. 现假设n ? 5。把上述单步线性定常迭代法中的M分别取为M? ?和M? ?,且已知 M?有两个复数特征值?j,?j 和三个实数特征值?,?,?, M?有两个复数特征值?j,?j 和三个实数特征值?,?, ?。那么这两个单步线性定常迭代法各自产生的序列?x?是否收敛?为什么?(8 分)3. 如果采用幂法求解题 2 中M?和M?的谱半径,那么哪个矩阵对应的幂法收敛速度更快?为什么?(4 分)4. 假设A ? ?3124?,b ? ?52?。如果选择M ? ?,是否能够让上述单步线性定常迭代法收敛到Ax ? b的解?如果能够实现, 选择一个合适的g; 如果不能实现,请说明原因。 (8 分)


    注意事项

    本文(2019年上海科技大学考研专业课试题992数值代数.pdf)为本站会员(雁南飞1234)主动上传,其收益全归该用户,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!




    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库