1、第八节一一、最值定理、最值定理 二、介值定理二、介值定理 机动 目录 上页 下页 返回 结束 闭区间上连续函数的性质 第一章 注意注意: 若函数在开区间上连续,结论不一定成立 .一一、最值定理、最值定理定理定理1.1.在闭区间上连续的函数即: 设, ,)(baCxfxoyab)(xfy 12则, ,21ba使)(min)(1xffbxa)(max)(2xffbxa值和最小值.或在闭区间内有间断 在该区间上一定有最大(证明略)点 ,机动 目录 上页 下页 返回 结束 例如例如,)1,0(,xxy无最大值和最小值 xoy1121,31,110,1)(xxxxxxfxoy1122也无最大值和最小值
2、又如又如, 机动 目录 上页 下页 返回 结束 ,)(baxf在因此bxoya)(xfy 12mM推论推论: 由定理 1 可知有, )(max,xfMbax)(min,xfmbax, ,bax故证证: 设, ,)(baCxf,)(Mxfm有上有界 .二、介值定理二、介值定理定理定理2. ( 零点定理 ), ,)(baCxf至少有一点, ),(ba且使xyoab)(xfy .0)(f0)()(bfaf机动 目录 上页 下页 返回 结束 ( 证明略 )在闭区间上连续的函数在该区间上有界. 定理定理3. ( 介值定理 ) 设 , ,)(baCxf且,)(Aaf,)(BABbf则对 A 与 B 之间的
3、任一数 C ,一点, ),(ba证证: 作辅助函数Cxfx)()(则,)(baCx 且)()(ba)(CBCA0故由零点定理知, 至少有一点, ),(ba使,0)(即.)(Cf推论推论:Abxoya)(xfy BC使.)(Cf至少有在闭区间上的连续函数 必取得介于最小值与最大值之间的任何值 .机动 目录 上页 下页 返回 结束 O1x例例. 证明方程01423 xx一个根 .证证: 显然, 1 ,014)(23Cxxxf又,01)0(f02) 1 (f故据零点定理, 至少存在一点, ) 1 ,0(使,0)(f即01423说明说明:,21x,0)(8121f内必有方程的根 ;) 1 ,(21取
4、1 ,21的中点,43x,0)(43f内必有方程的根 ;),(4321可用此法求近似根.二分法二分法在区间)1 ,0(的中点取1 ,0内至少有则则43210)()()(212xfxff上连续 , 且恒为正 ,例例2. 设)(xf在,ba对任意的, ),(,2121xxbaxx必存在一点证证:, ,21xx使. )()()(21xfxff令)()()()(212xfxfxfxF, 则,)(baCxF)()(21xFxF)()()(2112xfxfxf)()()(2122xfxfxf)()(21xfxf221)()(xfxf0使,)()(21时当xfxf,0)(xf,0)()(21xFxF故由零点
5、定理知 , 存在, ),(21xx,0)(F即. )()()(21xfxff当)()(21xfxf时, 取1x或2x, 则有)()()(21xfxff证明:小结 目录 上页 下页 返回 结束 内容小结内容小结则设, ,)(baCxf在)(. 1xf上达到最大值与最小值;上可取最大与最小值之间的任何值;4. 当0)()(bfaf时, ),(ba使. 0)(f必存在,ba上有界;在)(. 2xf,ba在)(. 3xf,ba机动 目录 上页 下页 返回 结束 1. 任给一张面积为 A 的纸片(如图), 证明必可将它思考与练习思考与练习一刀剪为面积相等的两片.提示提示: 建立坐标系如图.xoy则面积函
6、数,)(CS因,0)(SAS)(故由介值定理可知:, ),(0.2)(0AS使机动 目录 上页 下页 返回 结束 )(S, 2,0)(aCxf, )2()0(aff证明至少存在, ,0a使. )()(aff提示提示: 令, )()()(xfaxfx则, ,0)(aCx 易证0)()0(a2. 设一点习题课 目录 上页 下页 返回 结束 ,4,0)(上连续在闭区间xf备用题备用题 13xex至少有一个不超过 4 的 证证:证明令1)(3xexxf且)0(f13e)4(f1434e003e根据零点定理 , )4,0(,0)(f使原命题得证 .)4,0(内至少存在一点在开区间显然正根 .机动 目录 上页 下页 返回 结束