欢迎来到163文库! | 帮助中心 精品课件PPT、教案、教学设计、试题试卷、教学素材分享与下载!
163文库
全部分类
  • 办公、行业>
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 中职>
  • 大学>
  • 各类题库>
  • ImageVerifierCode 换一换
    首页 163文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    高等数学课件:1.8闭区间上连续函数的性质.ppt

    • 文档编号:2046987       资源大小:769.50KB        全文页数:11页
    • 资源格式: PPT        下载积分:14文币     交易提醒:下载本文档,14文币将自动转入上传用户(罗嗣辉)的账号。
    微信登录下载
    快捷注册下载 游客一键下载
    账号登录下载
    二维码
    微信扫一扫登录
    下载资源需要14文币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    优惠套餐(点此详情)
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、试题类文档,标题没说有答案的,则无答案。带答案试题资料的主观题可能无答案。PPT文档的音视频可能无法播放。请谨慎下单,否则不予退换。
    3、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者搜狗浏览器、谷歌浏览器下载即可。。

    高等数学课件:1.8闭区间上连续函数的性质.ppt

    1、第八节一一、最值定理、最值定理 二、介值定理二、介值定理 机动 目录 上页 下页 返回 结束 闭区间上连续函数的性质 第一章 注意注意: 若函数在开区间上连续,结论不一定成立 .一一、最值定理、最值定理定理定理1.1.在闭区间上连续的函数即: 设, ,)(baCxfxoyab)(xfy 12则, ,21ba使)(min)(1xffbxa)(max)(2xffbxa值和最小值.或在闭区间内有间断 在该区间上一定有最大(证明略)点 ,机动 目录 上页 下页 返回 结束 例如例如,)1,0(,xxy无最大值和最小值 xoy1121,31,110,1)(xxxxxxfxoy1122也无最大值和最小值

    2、又如又如, 机动 目录 上页 下页 返回 结束 ,)(baxf在因此bxoya)(xfy 12mM推论推论: 由定理 1 可知有, )(max,xfMbax)(min,xfmbax, ,bax故证证: 设, ,)(baCxf,)(Mxfm有上有界 .二、介值定理二、介值定理定理定理2. ( 零点定理 ), ,)(baCxf至少有一点, ),(ba且使xyoab)(xfy .0)(f0)()(bfaf机动 目录 上页 下页 返回 结束 ( 证明略 )在闭区间上连续的函数在该区间上有界. 定理定理3. ( 介值定理 ) 设 , ,)(baCxf且,)(Aaf,)(BABbf则对 A 与 B 之间的

    3、任一数 C ,一点, ),(ba证证: 作辅助函数Cxfx)()(则,)(baCx 且)()(ba)(CBCA0故由零点定理知, 至少有一点, ),(ba使,0)(即.)(Cf推论推论:Abxoya)(xfy BC使.)(Cf至少有在闭区间上的连续函数 必取得介于最小值与最大值之间的任何值 .机动 目录 上页 下页 返回 结束 O1x例例. 证明方程01423 xx一个根 .证证: 显然, 1 ,014)(23Cxxxf又,01)0(f02) 1 (f故据零点定理, 至少存在一点, ) 1 ,0(使,0)(f即01423说明说明:,21x,0)(8121f内必有方程的根 ;) 1 ,(21取

    4、1 ,21的中点,43x,0)(43f内必有方程的根 ;),(4321可用此法求近似根.二分法二分法在区间)1 ,0(的中点取1 ,0内至少有则则43210)()()(212xfxff上连续 , 且恒为正 ,例例2. 设)(xf在,ba对任意的, ),(,2121xxbaxx必存在一点证证:, ,21xx使. )()()(21xfxff令)()()()(212xfxfxfxF, 则,)(baCxF)()(21xFxF)()()(2112xfxfxf)()()(2122xfxfxf)()(21xfxf221)()(xfxf0使,)()(21时当xfxf,0)(xf,0)()(21xFxF故由零点

    5、定理知 , 存在, ),(21xx,0)(F即. )()()(21xfxff当)()(21xfxf时, 取1x或2x, 则有)()()(21xfxff证明:小结 目录 上页 下页 返回 结束 内容小结内容小结则设, ,)(baCxf在)(. 1xf上达到最大值与最小值;上可取最大与最小值之间的任何值;4. 当0)()(bfaf时, ),(ba使. 0)(f必存在,ba上有界;在)(. 2xf,ba在)(. 3xf,ba机动 目录 上页 下页 返回 结束 1. 任给一张面积为 A 的纸片(如图), 证明必可将它思考与练习思考与练习一刀剪为面积相等的两片.提示提示: 建立坐标系如图.xoy则面积函

    6、数,)(CS因,0)(SAS)(故由介值定理可知:, ),(0.2)(0AS使机动 目录 上页 下页 返回 结束 )(S, 2,0)(aCxf, )2()0(aff证明至少存在, ,0a使. )()(aff提示提示: 令, )()()(xfaxfx则, ,0)(aCx 易证0)()0(a2. 设一点习题课 目录 上页 下页 返回 结束 ,4,0)(上连续在闭区间xf备用题备用题 13xex至少有一个不超过 4 的 证证:证明令1)(3xexxf且)0(f13e)4(f1434e003e根据零点定理 , )4,0(,0)(f使原命题得证 .)4,0(内至少存在一点在开区间显然正根 .机动 目录 上页 下页 返回 结束


    注意事项

    本文(高等数学课件:1.8闭区间上连续函数的性质.ppt)为本站会员(罗嗣辉)主动上传,其收益全归该用户,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!




    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库