1、分式的基本性质分式的基本性质一、教材分析分式的基本性质,是在学生小学学习过的分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的约分、通分及分式计算的基础,是学好本章及以后学习方程、函数的关键。二、学情分析 大部分学生数学基础比较薄弱,对数学学习感觉很困难,导致学习兴趣低下。为了激发学生的学习数学的兴趣,平时我在课堂上鼓励学生积极发言、小组讨论、合作探究等多种形式调动学生学习的积极性。三、教学目标知识与技能: 1理解分式的基本性质. 2.会用分式的基本性质将分式变形.过程与方法:利用分式与分数有许多类似之处,从分数入手,研究出分式的基本性质,同时还要讲清分式与分数的联系与区别.
2、情感态度与价值观: 培养数学学习兴趣及类比能力,使学生养成良好的学习习惯重点理解分式的基本性质.四、教学重点难点难点灵活应用分式的基本性质将分式变形.五、教学过程设计一、问题引入1请同学们考虑: 与 相等吗? 与 相等吗?为什么?2说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据? 3提问分数的基本性质,让学生类比猜想出分式的基本性质二、探究新知1.分数的基本性质:分式的分子、分母同乘以或除以同一个不等于分式的分子、分母同乘以或除以同一个不等于 0 的整式,分式的值不变的整式,分式的值不变.(为什么乘以或除以的整式都要不等于乘以或除以的整式都要不等于 0?)?)432015249
3、834343201520152、 (C0)A、B、C 是整式。是整式。三、运用新知三、运用新知1、例题:填空: (1)(2)2、填空:(1) xxx3222= 3x (2) 32386bba= 33a (3) cab1= cnan (4) 222yxyx= yx 四、巩固练习1、例题:不改变分式的值,使下列分式的分子和分母都不含“-”号. (1) 233abyx (2) 2317ba 2、练习:不改变分式的值,使下列分式的分子和分母都不含“-”号(1) 2135xa (2) mba2)( 五、小结1、分数的基本性质:分式的分子、分母同乘以或除以同一个不等于分式的分子、分母同乘以或除以同一个不等
4、于 0 的整式,分式的值不变的整式,分式的值不变.(为什么乘以或除以的整式都要不等于乘以或除以的整式都要不等于 0?)?)2、 (C0)A、B、C 是整式。是整式。六、练习及检测题练习:学案114 页-115 页相关习题。七、作业设计P133 页:习题 15.1:4、5 题,.AAC AACBBC BBC y3xxy22336xxyx xy1ab 2a b22aba 2a b,.AAC AACBBC BBC10.2 分式的基本性质第十章 分 式导入新课导入新课讲授新课讲授新课当堂练习当堂练习课堂小课堂小结学习目标习目标1.理解并掌握分式的基本性质(重点)2.会运用分式的基本性质进行分式的约分和
5、通分(难点)导入新课导入新课情境引入境引入分数的 基本性质 分数的分子与分母同时乘以(或除以)一个不等于零的数,分数的值不变.2.这些分数相等的依据是什么? 1.把3个苹果平均分给6个同学,每个同学得到几个苹果?讲授新课讲授新课分式分式的基本性质基本性质一思考:下列两式成立吗?为什么?分数分数的分子与分母同时乘以(或除以)一个不的分子与分母同时乘以(或除以)一个不等于等于0的数,的数,分数分数的值不变的值不变.分数的基本性质:即对于任意一个分数 有:想一想:类比分数的基本性质,你能猜想分式有什么性质吗?思考:分式的基本性质: 分式的分子与分母乘以(或除以)同一个不等于0的整式,分式的值不变.上
6、述性质可以用式表示为:其中A,B,C是整式.知识要要点例1填空:看分母如何变化,想分子如何变化.看分子如何变化,想分母如何变化.典例精析典例精析想一想:(1)中为什么不给出x 0,而(2)中却给出了b 0?想一想: 运用分式的基本性质应注意什么?(1)“(1)“都”(2)(2) “同一个”(3)(3) “不为0”例2不改变分式的值,把下列各式的分子与分母的各项系数都化为整数. 解: 不改变分式的值,使下列分子与分母都不含“”号 解:(1)原式=(2)原式=(3)原式=练练一练练想一想:联想分数的约分,由例1你能想出如何对分式进行约分?分式分式的约分约分二( )( )与分数约分类似,关键是要找出
7、分式的分子与分母的最简公分母. 像这样,根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分知识要要点约分约分的定义义 分式的约分,一般要约去分子和分母所有的公因式,使所得的结果成为最简分式或整式. 经过约分后的分式 ,其分子与分母没有公因像这样分子与分母没有公因式的式子,叫做最简分式 在化简分式 时,小颖和小明的做法出现了分歧:小颖:小明:你对他们俩的解法有何看法?说说看! 一般约分要彻底, 使分子、分母没有公因式. 议议一议议例3 约分: : 典例精析典例精析分析:为约分要先找出分子和分母的公因式.找公因式方法:(1)约去系数的最大公约数.(2)约去分子分母相同因式的最低
8、次幂.解:(公因式是5ac2)解:分析:约分时,分子或分母若是多项式,能分解则必须先进行因式分解.再找出分子和分母的公因式进行约分.知识要要点约分约分的基本步骤基本步骤()若若分分子子分分母母都都是是单单项项式式,则则约约去去系系数数的的最最大公约数,并约去相同字母的最低次幂;()若若分分子子分分母母含含有有多多项项式式,则则先先将将多多项项式式分分解因式,然后约去分子分母所有的公因式注意事项:(1)约分前后分式的值要相等.(2)约分的关键是确定分式的分子和分母的公因式.(3)约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式.分式分式的通分通分三问题1:通分:最小公
9、倍数:24分数的通分:把几个异分母的分数化成同分母的分数,而不改变分数的值,叫做分数的通分.通分的关键是确定几个分母的最小公倍数想一想:联想分数的通分,由例1你能想出如何对分式进行通分?(b0)问题2:填空知识要要点分式分式的通分通分的定义义与分数的通分类似,根据分式的基本性质,使分子、分母同乘适当的整式(即最简公分母),把分母不相同的分式变成分母相同的分式,这种变形叫分式的通分.如分式 与 分母分别是ab,a2,通分后分母都变成了a2b.最简公分母最简公分母为通分先要确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,叫做最简公分母.注意:确定最简公母是通分的关键.最简公分母最
10、简公分母例4 通分: 解:(1)最简公分母是2a2b2c(2)最简公分母是(x+5)(x-5)不同的因式最简公分母1(x-5)(x-5)1(x+5)1(x+5)例5 通分: 方法归纳:先将分母因式分解,再将每一个因式看成一个整体,最后确定最简公分母 (x+y)(x-y)解:最简公分母是x(x+y)(x-y)x(x+y)确定几个分式的最简公分母的方法:(1)因式分解(2)系数:各分式分母系数的最小公倍数;(3)字母:各分母的所有字母的最高次幂(4)多项式:各分母所有多项式因式的最高次幂(5)积方法归纳方法归纳想一想: 分数和分式在约分和通分的做法上有什么共同点?这些做法的根据是什么?约分约分通分
11、通分分数分式依据找分子与分母的最大公约数找分子与分母的公因式找所有分母的最小公倍数找所有分母的最简公分母分数或分式的基本性质当堂练习当堂练习2.下列各式中是最简分式的( )B1.下列各式成立的是( )A.B.C.D.D3.若把分式A扩大两倍 B不变 C缩小两倍 D缩小四倍 的 x 和y 都扩大两倍,则分式的值( )B4.若把分式 中的 和 都扩大3倍,那么分式 的值( ).A扩大3倍 B扩大9倍C扩大4倍 D不变A解: 5.约分 6.通分:解:最简公分母是12a2b3解:最简公分母是(2x+1)(2x-1)小贴士:在分式的约分与通分中,通常碰到如下因式符号变形:(b-a)2=(a-b)2;b-a=-(a-b).解:最简公分母是(x+y)2(x-y)课堂小结课堂小结分式的基本性质内容作用分式进行约分和通分的依据注意(1)分子分母同时进行;(2)分子分母只能同乘或同除,不能进行同加或同减;(3)分子分母只能同乘或同除同一个整式;(4)除式是不等于零的整式进行分式运算的基础